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Introduction

As long as mankind has existed on the face of this earth, it has tried to unravel the

mysteries of the nature of space surrounding him. From the ancient Greeks, who could

merely philosophize that we only had four elements, to the scientists today who use

high-energy accelerators and powerful computers to probe the smallest entities of na-

ture, we are continuously trying to grasp what is around us. The real materialization

of the modern science we now call particle physics took place at the start of the last

century [1]. It can be said that it started with the discovery of the electron in 1897. J.J.

Thomson carried out experiments that established the electron’s charge and mass [2].

Quickly after, γ rays were discovered, but not yet recognized as electromagnetic ra-

diation. A crucial step to the understanding of sub-atomic particles was taken with

the development of the theory of Quantum Mechanics by Planck and others around

1900 [3]. Soon after this, Einstein postulated his theory that light consisted of quanta

that behaved like particles [4]. From 1910 through 1930 the nuclear model was devel-

oped, with a model postulating a nucleus made up of protons and neutrons, bound

together by the strong force and circled by electrons. However, it turned out that the

world was not as simple as this. Soon, many heavier versions of the proton and neutron

were discovered, together with their anti-particles, which were interacting through the

strong interaction (mesons and baryons). This proliferation of particles pointed the

way to a substructure of these particles, culminating in the quark model proposed by

Gell-Mann and Zweig in 1964, who originally proposed three quarks [5, 6]. Hitherto,

six different kinds of quarks have been discovered, the most recent the bottom quark

in 1977 [7] and the top quark in 1995 [8, 9]. Heavier versions of the electron were

found as well: the µ-lepton in 1937 and the τ -lepton in 1976 [10, 11]. The neutrino,

already predicted by Pauli in 1930 [12], was found in 1956 by Cowan and Reines [13].

To understand how all these particles interact, theoretical frameworks were needed and

developed: the electromagnetic interaction, carried by photons, the weak interaction,

carried by the W ± and Z0 bosons (which were discovered in 1983 at CERN by UA1

and UA21 [14, 15, 16, 17]), and the strong interaction, carried by gluons. In 1967,

1UA1 and UA2 were experiments located at CERN and analyzed p̄p collisions. They were a
precursor to the current Tevatron experiments.



2 Introduction

Glashow, Weinberg and Salam unified the weak and the electromagnetic interaction

into the electroweak interaction, requiring the existence of a Higgs boson [18]. The

gluons and quarks could be described by the theory of quantum chronodynamics, or

QCD.

All these particles and their interactions together are now described by a theoretical

framework known as the Standard Model. Many tests of the Standard Model have

been performed and so far none has proven beyond doubt that the Standard Model is

incorrect. However, mysteries still remain. The most feeble force in nature, gravity,

cannot be accommodated in the current Standard Model. Also, the Higgs boson, the

last building block of the Standard Model, has not been detected so far, even though

the LEP experiments at CERN found tantalizing hints for the existence of a Higgs

boson with a mass around 114 GeV/c2 [19, 20].

An interesting probe for the Standard Model is the b-jet production cross section,

measured first by UA1, which was a factor two to three too high when compared with

theory [21]. Subsequent measurements by CDF and DØ in Run I were also on the high

side, but could not prove a significant excess. In Run II, with an upgraded accelerator

that provides 10 times more instantaneous luminosity and a 10% higher energy, together

with an upgraded detector, this measurement can be done more precisely, yielding a

more stringent test of the Standard Model.

This thesis describes the measurement of the b-jet production cross section at a

center of mass energy of 1.96 TeV, using a muon tag to identify jets containing a

b-quark. For this the DØ detector, based at the Tevatron p̄p collider is used. This

detector was shut down for an upgrade in 1995, to be restarted in May 2001. The

measurement presented here is one of the first done with this upgraded detector, and

therefore uses a relatively small data sample.

Chapter 1 describes the Standard Model, and gives an overview of the theoretical

prediction by the Standard Model of the b-jet production cross section. Chapter 2

describes the apparatus used, with special emphasis on the muon system and the

calorimeter. All three levels of the trigger system, crucial for an experiment at a

hadron collider such as the Tevatron, are handled in Chapter 3. Offline reconstruction

of events is described in Chapter 4, while Chapter 5 deals with the selection of the

events used in the analysis and shows a first calculation of the µ+jet cross section. The

relative b-jet content is extracted in Chapter 6, where ultimately the b-jet cross section

is calculated. Chapter 7 then concludes this thesis by confronting this measurement

with the prediction of the Standard Model.



Chapter 1

The Standard Model

The Standard Model is the theory that describes (sub-)nuclear matter and its inter-

actions. It encompasses the electromagnetic force and weak forces, combined in the

electroweak theory, and the strong force described by the theory of quantum chro-

modynamics, QCD. The model is a Quantum Field theory based on the concept

of local gauge invariance. For the Standard Model, the gauge symmetry group is

SU(3) × SU(2)L × U(1), where SU(3) is the symmetry group describing the strong

interaction and SU(2)L × U(1) the symmetry group describing the electroweak inter-

action. The theory describes two general classes of particles: spin-1
2

matter particles

known as fermions and spin-1 gauge vector particles known as bosons, which carry

the forces. In this formalism, SU(2)L involves only left-handed fermions (hence the

L subscript). The fermions can be subdivided in leptons and quarks, which can be

grouped into three families. Some properties of the leptons and quarks are summa-

rized in tables 1.1 and 1.2, respectively [22]. The vector gauge bosons that mediate the

forces between these particles are required by the local gauge invariance to be massless.

The bosons that carry the electroweak force - namely, two charged particles, W + and

W − and one neutral particle Z0 - interact with themselves through the triple gauge

couplings. Through the Higgs mechanism, they acquire a non-zero mass by sponta-

neous symmetry breaking of the SU(2)L ×U(1) symmetry group. The photon remains

massless. Even though the former bosons have been discovered, the Higgs boson itself

has eluded detection so far.

The quarks interact via the gauge bosons of the SU(3) group, called gluons. There

are eight gluons in total, which interact with each other due to the non-abelian nature

of the SU(3) group. The observed strongly interacting particles in nature are called

hadrons, which can be classified into mesons (quark-antiquark states) and baryons

(three quark states). In the Standard Model, quarks have an extra internal degree of

freedom, namely color. Particles in nature have to consist of either a colored and an

anti-colored particle, or three differently colored particles. Thus, only color singlets
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Lepton Mass (MeV/c2) Charge

Electron (e) 0.511 -1

Electron Neutrino (νe) < 3·10−6 0

Muon (µ) 105.7 -1

Muon Neutrino (νµ) < 0.19 0

Tau (τ) 1784 -1

Tau Neutrino (ντ ) < 18.2 0

Table 1.1: Mass and charge properties of leptons.

Quark Mass (GeV/c2) Charge

Down (d) 5·10−3 – 8.5·10−3 -1
3

Up (u) 1.5·10−3 – 4.5·10−3 2
3

Strange (s) 80·10−3 – 155·10−3 -1
3

Charm (c) 1.5 – 1.8 2
3

Bottom (b) 4.6 – 5.1 -1
3

Top (t) 169 – 179 2
3

Table 1.2: Mass and charge properties of quarks. For the three lightest quarks (u, d

and s) the MS masses are quoted; for the other three the pole mass is listed.
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exist and no physical colored states occur. The quarks interchange color through the

strong interaction, with the gluons carrying the color. The strength of the strong

interaction is specified by the strong coupling parameter αs. This parameter decreases

with increasing |Q2|, the absolute squared four-momentum transfer in the collision.

Cross sections in QCD can be approximated by expansions in αs. If αs is sufficiently

small, which is the case for |Q2| higher than a few GeV2 (so called asymptotic freedom),

one can use perturbation theory to calculate the cross sections predicted by QCD

reliably. For smaller Q2 values, these cross sections cannot be calculated as reliably.

The center of mass energy of the Tevatron,
√

s = 1.96 TeV, is high enough to allow

precise measurements of the QCD predictions, especially for the production of bottom

and charm quarks.

1.1 Asymptotic Freedom

In QCD the leading order quark production processes, as are shown in figure 1.1, is

modified by higher order loop diagrams in which the loops consist of quarks or gluons

(figure 1.2). The effect of these loops causes the bare color charge of the quark to be

screened, which affects the coupling αs of other quarks and gluons to the bare color

charge:

αs(|Q2|) =
αs(m2

Z)

1 + (αs(m2
Z)/12π)(11n − 2f) ln(|Q2|/m2

Z)
(1.1)

Here, mZ is a reference scale, in this case the Z-mass, n is the number of colors, and f is

the number of flavors participating in the process at the given |Q2|, for a certain renor-

malization scheme. Since in the Standard Model n = 3 and f = 4 for bb̄ production

and for the most common renormalization schemes, 11n−2f is positive. Consequently,

the loops have in fact an anti-screening effect on the bare color charge: with increasing

|Q2|, the effective coupling decreases. This is called “asymptotic freedom”. When |Q2|
gets large, the quarks and gluons decouple and behave like almost free particles.

The perturbation theory on which QCD is based breaks down when higher or-

der corrections are calculated in the ultraviolet region, corresponding to large loop

momenta. Through the choice of the renormalization procedure, one can absorb the

infinite parts of the corrections into the masses and coupling constants of the theory,

which requires the introduction of a renormalization scale µR. The underlying idea here

is that there is a set of bare parameters that are divergent, such as the mass and the

coupling constant. These bare parameters are unmeasurable. They can be renormal-

ized such that they exactly cancel the infinities resulting from higher order corrections

in any calculation. After these infinities are cancelled, the renormalized parameters

remain, which obtain physical meaning and can be measured. One has to note here

that the renormalization parameter µR is purely a mathematical tool which is needed
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Figure 1.1: Diagrams for leading order heavy quark production.
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Figure 1.2: Some higher order diagrams for heavy quark production with loops in the

gluon propagator.

for the process of renormalization, and no physical consequences can result from the

choice of the value of µR. This implies that changes in cross sections due to the explicit

dependance on µR have to be offset by changes in the renormalized parameters, such

as the coupling constant and, possibly, the mass.
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1.2 Heavy quark production

In the regime of asymptotic freedom, we can decompose the proton-antiproton interac-

tion into a set of parton-parton interactions. The cross section for a certain interaction

can be written as:

σ(|Q2|) =
∑
ij

∫
dxidxjσ̂ij(xipA, xjpB, µR, µF , αs(µR))F A

i (xi, µF )F B
j (xj, µF ) (1.2)

where σ̂ij is the parton level cross section between the partons in each hadron, xi

and xj are the fractions of the proton momentum pA and anti-proton momentum pB

that the partons i and j carry. F A
i and F B

j are the parton distribution functions

(PDFs) describing the momentum distribution of the partons inside the proton and

anti-proton. These structure functions contain a dependance on a factorization scale

µF , analogous to µR, which results from the following: naively, the parton model

describes the proton as containing three almost free constituents, with no interactions

between them. A probe therefore scatters on a single, free and effectively massless

constituent. This naive model therefore has no implicit dependance on the absolute

squared four-momentum transfer |Q2| in the collision. However, the quarks inside

the proton do have interactions through gluon exchange and emission. Up to a certain

scale, namely the factorization scale µF , these interactions are absorbed into the parton

distributions, and therefore removed from the single parton interaction cross sections

σ̂ij. For bottom quark production, this factorization scale is normally chosen to be a

function of the mass of the b-quark, mb, and its transverse momentum1.

In QCD, the cross section of b-quark production in the regime of asymptotic freedom

can be written as an expansion in αs:

σ̂ij = α2
s(µ)G

(0)
ij (ŝ, mb) + α3

s(µ)G
(1)
ij (ŝ, mb) + O(α4

s) (µ = µF = µR) (1.3)

where G(0) and G(1) are dependent on the quark mass mb and the center of mass

energy ŝ. The total cross section for b-quark production results from the sum of all

contributing processes. The Feynman diagrams for the leading order processes are

shown in figure 1.1. The experimental signature for such an event is two jets in the

detector, with a transverse energy balance. Some next to leading order Feynman

diagrams are shown in figures 1.2 and 1.3. The processes shown in figure 1.3 have

three partons in the final state, and are either radiative corrections to the leading

order processes (where we have two quarks or two gluons in the initial state), or a new

class of processes in which a quark and a gluon are in the initial state.

In the following, we will study the production of b-jets instead of the production of

b-quarks. The main difference between these studies is that in the case of production

1The transverse momentum pT is defined as pT = p sin(θ), with θ the angle of the particle with
respect to the beam. Similarly, the transverse energy ET is defined as ET = E sin(θ).
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Figure 1.3: Some diagrams showing the next to leading order corrections to heavy

quark production.

of b-quarks, one is interested in the properties of the heavy quark itself, regardless of

the event structure in which the b-quark is produced, while for a jet one is interested in

the energy of the jet that contains one or more heavy quarks, and not in the fraction of

the energy carried by these quarks. Calculating the properties of the quark brings with

it the difficulty of the emission of collinear gluons, which at high momentum cause

large logarithms to appear. These logarithms need to be resummed, and can thus

be included in the fragmentation functions. The calculation of jet properties is not

sensitive to the details of the analysis of large logarithms, since the jet contains both

the quark and the collinear gluons. The experimental measurement of the transverse jet

energy distribution therefore does not depend on the details of the fragmentation of the

b-quark. Fragmentation describes the emissions and absorptions of gluons between the

partons in the final phase of the collisions, and the splitting of gluons into quarks. In

the hadronization stage the quarks and gluons, which all carry a color charge, combine

to form colorless hadrons. An experimental jet is now defined as the assembly of all

these hadrons, around a common axis. This is illustrated in figure 1.4.

The single particle inclusive next to leading order b-quark production cross section

has been calculated by Nason, Dawson and Ellis [23, 24] as well as Beenakker et al. [25,

26]. Mangano and Frixione have extended this work to cover b-jets [27]. A theoretical

calculation, providing the 4-momenta of the b-quark, b̄-quark and a possible gluon,

with the appropriate event weight is provided by Mangano, Nason and Ridolfi [28].

Our goal is now to use this calculation to measure the production rate for b-jets, that

is, jets that contain one or more b-quarks.

Many algorithms are available that can be used to construct jets. In this analysis,

we adopt the Snowmass convention, where the particles are clustered in (η, φ)-space in

a cone of radius R, with R = 0.5 throughout the analysis [29]. We only consider jets

that contain a b or b̄-quark, or both; the gluon jet is disregarded if the gluon does not

end up in the same jet with a heavy quark.

We calculate the cross section for b-jets with |ηjet| < 0.6, to reflect a realistic
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Figure 1.4: Illustration of the jet definition on theoretical level and experimental level.

At the theory level, we only use the heavy quark, with a possible gluon. The ex-

perimental jet takes into account the entire fragmentation and hadronization process.

The out of cone showering, shown by the black lines pointing outside the jet cone, is

corrected for by using the Monte Carlo simulation at a later stage.

geometrical and trigger acceptance of the DØ detector during the start of Run II. The

factorization scale µF and renormalization scale µR are chosen as:

µ2
F = µ2

R = µ2
0 =

(pb
T )2 + (pb̄

T )2

2
+ m2

b (1.4)

and we vary these scales between µ0/2 and 2µ0 to account for theoretical uncertainties.

The parton distribution function adopted is CTEQ6M [30]. For the b-quark mass,

we use 4.8 ± 0.2 GeV/c2, with the errors reflecting the uncertainty on the mass mea-

surement. This results in the total b-jet cross section as a function of Ejet
T , shown in

figure 1.5. The dotted lines show the error resulting from floating µF and µR, and

varying the b-quark mass. Figure 1.6 shows the relative contributions to the full theo-

retical error of floating µF and µR and varying the b-mass. Clearly the uncertainty on

the factorization and normalization scales dominates the error on the calculated cross

section.

Figure 1.7 shows the theoretical cross section subdivided in the contributions of the

different initial states. At high Ejet
T , the gluon splitting processes become dominant.

This is also demonstrated in figure 1.8, which shows the cross section of jets con-

taining only one b-quark (or b̄-quark) and those containing both a b- and a b̄-quark.

Here as well the relative contribution of bb̄-jets increases with higher Ejet
T .
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with 0.5 cone jets, with the theoretical errors resulting from floating µF and µR, as

well as the b-quark mass. The PDF set used is CTEQ6M.
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1.3 b-jets as a precursor to top and Higgs physics

at the Tevatron

The proper understanding of the properties of b-jets is crucial for the detection and

reconstruction of particles that decay into b-quarks, of which the most interesting are

the top quark and the Higgs boson. Figure 1.9 shows the cross sections for b, t and

Higgs production at hadron colliders as a function of center of mass energy. Due to

the low cross section of top and Higgs production compared to the total inelastic, non-

diffractive cross section, one requires b-jets as the sensitive probes needed to sift the

Higgs- and top-producing events from the background.

With the available center of mass energy of 1.96 TeV, the Tevatron currently is the

only place in the world where top quark pairs can be produced directly. They decay

primarily through tt̄ → (W +b)(W −b̄), resulting in two b-jets in the event. If properly

detected, these b-jets can be used to remove backgrounds to the tt̄ signal, which gives

a considerable improvement in the signal over background ratio.

The best option to detect the Higgs boson at the Tevatron is the associated produc-

tion of a Higgs boson with a W or Z boson. The W and Z then decay leptonically or

hadronically. The Higgs boson primarily decays to a bb̄ pair, since the Higgs coupling

to a fermion is proportional to the squared mass of that fermion, and the b-quark is

almost three times heavier than the next heavy particle (the τ lepton). This gives rise

to two b-jets in the event, in addition to the decay products of the W or Z boson.

The detection of both the top quark and the Higgs boson thus relies on proper

detection and reconstruction of b-jets. The measurement of the b-jet cross section in

the following chapters improves our understanding of these jets, paving the way for a

better understanding of the Standard Model.
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Figure 1.9: Energy dependance of interesting physics processes at hadron colliders as

function of the center of mass energy. The discontinuities in the lines are caused by

the change from p̄p collisions to pp collisions.
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Chapter 2

DØ at the Tevatron

The DØ experiment was originally designed to study p̄p collisions at a center of mass

enery of 1.8 TeV at the Fermilab Tevatron Collider. During Run I, from July 1990

until August 1995, the Tevatron delivered 125 pb−1 of integrated luminosity, which

allowed a wide range of high mass and high pT physics phenomena to be investigated.

During a shutdown period from 1995 until 2001 the Tevatron was upgraded to run with

a luminosity increased by one order of magnitude to 2.1× 1032 cm−2s−1, at a center of

mass energy of 1.96 TeV. In this period, the DØ detector was upgraded to handle the

increased luminosity at this new high-energy frontier.

2.1 The Tevatron

The Tevatron is a p̄p collider that accelerates both the protons and anti-protons to an

energy of 980 GeV, providing the center of mass energy of 1.96 TeV. Until the Large

Hadron Collider at CERN starts in 2007, the Tevatron will be the highest energy

collider in the world.

As is the case in all current day high-energy accelerators, the Tevatron is only the

last accelerator in a long chain of accelerators, as is illustrated in figure 2.1. The proton

beam originates from the pre-accelerator, where negatively charged hydrogen ions are

accelerated to 750 keV in a Cockroft-Walton accelerator. From there, the hydrogen

ions are bunched and led into a 150 meter long linear accelerator (LINAC), which

accelerates the ions to an energy of 400 MeV, after which they are fed into a circular

accelerator, called the booster. Here, the ions are led through a carbon foil which

strips both electrons from the hydrogen nucleus, leaving the proton. The protons are

then accelerated to an energy of 8 GeV. After this stage, they enter the Main Injector.

This circular accelerator serves two purposes: it separately accelarates protons and

anti-protons from 8 GeV to 150 GeV for subsequent insertion in the Tevatron, and it

accelerates protons from 8 GeV to 120 GeV for the production of anti-protons. The
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anti-protons are produced by colliding the protons that have been accelerated in the

Main Injector to an energy of 120 GeV on a nickel target. These collisions produce

many secondary particles, among which are anti-protons, approximately one for every

105 protons. The anti-protons produced are temporarily stored in a circular ring, called

the Accumulator. When approximately 1011 anti-protons have been produced, they are

assembled, bunched and inserted in the Main Injector to be accelerated to an energy of

150 GeV for injection in the Tevatron. The tunnel of the Main Injector also holds the

Antiproton Recycler, which stores decelerated anti-protons coming from the previous

run in the Tevatron for future use. After separate acceleration of the protons and

anti-protons in the Main Injector to an energy of 150 GeV, both beams are inserted in

the Tevatron, where they are further accelerated to an energy of 980 GeV.

The Tevatron uses superconducting magnets with a field strength of 4.2 Tesla (at a

beam energy of 980 GeV) to bend the protons and anti-protons through the 1000-meter

DO

CDF

Tevatron

Proton
Neutrino

Meson Cockroft-Walton

Accumulator

Linac

Booster

Target hall

Main Injector/
Booster

Anti-protonProton

Direction Direction

Figure 2.1: The Fermilab accelerator chain, showing the DØ collider region and the

fixed target lines.
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Parameter Run IIa beam parameter

Energy 980 GeV

Protons / bunch 27 × 1010

Antiprotons / bunch 7.5 × 1010

Bunches 36

Antiproton stacking 20 × 1010/hour

Luminosity 2.1 × 1032 cm−2s−1

Bunch spacing 396 ns

Interactions per crossing 5.8

Table 2.1: Beam parameters for the Tevatron Run IIa.

radius tunnel. The proton beam traverses the Tevatron clockwise, with the anti-proton

beam moving in the opposite direction. The beams meet at the two interaction points,

at BØ, where the CDF detector is located, and at DØ, where the DØ detector is

located. The longitudinal position of the interaction point has a Gaussian shaped

distribution around the center of the DØ detector with a width of approximately 25

cm. In the transverse plane the position distribution also has a Gaussian shape but

with a width of 30 µm. Some parameters for the Tevatron for Run IIa are given in

table 2.1.

These parameters have changed significantly from the previous run, Run I, to max-

imize the physics output of Run II. Most notable, the design luminosity is increased

tenfold to 2.1 × 1032 cm−2s−1 by:

• Increasing the number of bunches from 6 to 36, while simultaneously lowering

the bunch crossing time from 3.6 µs to 396 ns;

• Increasing the number of protons and anti-protons per bunch, using the Main

Injector and the Recycler.

2.2 The DØ Detector

The DØ detector design was optimized for efficient identification of leptons and jets

over a wide rapidity region. This was achieved by using finely segmented, hermetic

electromagnetic and hadronic calorimetry, muon detection using magnetized iron, and

non-magnetic inner tracking. The data collected in Run I has allowed the DØ collabo-

ration to study a multitude of interesting physics topics, resulting in 118 publications.

Most notable is the discovery of the top quark in 1995 [9]. For Run II, the DØ upgrade
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Figure 2.2: Cross section view of the DØ detector.
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has extended the capability of the detector to include track momentum determination

and vertexing, while maintaining an angular coverage to |η| ≈ 3, where η is the pseu-

dorapidity, defined as η = − ln(tan θ/2) and θ is the angle with respect to the beam.

Figure 2.2 shows a cross section view of the DØ detector.

2.2.1 Inner Tracker

The inner tracker consists of two major subsystems: a high precision silicon microstrip

tracker, and a scintillating fiber tracker, which provides a trigger. The entire inner

tracker is encased in a 2.7 meter long superconducting solenoidal magnet, which pro-

vides a field of 2 Tesla. Figure 2.3 shows a cross section view of the inner tracker.

Silicon Tracker Fiber Tracker Preshower

Solenoid

2.7 m

Figure 2.3: Schematic view of the inner tracker.
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Silicon Tracker

The silicon tracker consists of silicon disks and barrels formed into 6 disk/barrel mod-

ules [31]. Each barrel module consists of 4 (radial) layers of detector ladder assemblies.

The outer barrel on each side has single sided silicon in layers one and three with

axial strips with a pitch size of 50 µm, while the inner four barrels have double sided

silicon in these two layers, with axial strips and a pitch size of 50 µm on the p-side

and 153.5 µm pitch with a 90◦ stereo angle on the n-side, where p- and n-side refer

to positively and negatively doped strips of silicon respectively. The p-side has axial

readout, while the n-side has stereo readout. Layers two and four are double sided

with a 2◦ stereo angle in all barrels, and a pitch size of 50 µm on the p-side and 62.5

µm on the n-side. Each disk module in the central part of the detector, called F-disks,

has 12 wedge shaped double-sided detectors. The readout strips are running parallel

to one edge of the wedge, at an angle of 15◦ with respect to the symmetry axis of the

wedge. Thus, the readout strips on each side have an effective 30◦ stereo angle. Two

sets of three end disks, also named F-disks, are placed on each end side of the detector.

The detectors in these disks have a pitch size of 50 µm on the p-side and 62.5 µm on

the n-side. Further along the beam pipe, on each side of the detector, are two bigger

disks (called H-disks) of single sided silicon wedges with a pitch size of 81 µm, with an

effective stereo angle of 15◦, used for forward tracking. These numbers are summarized

in table 2.2. This detector setup allows a measurement of single hit positions with a

resolution of approximately 10 µm. The complete detector consists of approximately

8·105 channels, and a schematic overview is shown in figure 2.4.

Silicon detector element Pitch (µm)

Axial strips 50

2◦ stereo strips, n-side 62.5

90◦ stereo strips, n-side 153.5

F-disks, p-side 50

F-disks, n-side 62.5

H-disks 81

Table 2.2: Pitch size for each silicon detector element.

Central Fiber Tracker

The Central Fiber Tracker consists of scintillating fibers mounted on eight concentric

cylinders [32]. The fibers are 835 µm in diameter, and are constructed in ribbons each

128 fibers wide composed of a ’doublet’ layer of fibers, with the center of one of the
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F-disk

Barrel

H -disk

2.5 m

Figure 2.4: Schematic view of the silicon tracker, showing the 6 barrels, 12 F-disks and

4 H-disks.

single layer of fibers in the space between the fibers of the other single layer. There

are eight doublet axial layers of scintillating fibers as well as eight doublet stereo layers

that make a 3◦ u- or v-type stereo angle1 with the beam axis. The detector is divided

into 80 sectors in φ, where φ is the azimuthal angle. Each pie shaped slice has 896 fibers

and the entire detector has 71,680 channels. The light from the fibers is converted into

electrical pulses by visible light photon counters, VLPC’s.

The resolution with which the inner tracker can measure the transverse momentum

of particles is shown in figure 2.5.

1A u-v geometry has one layer of active material aligned along +α from the symmetry axis, and
another layer aligned along -α from the symmetry axis, where α is the stereo angle.
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D

Figure 2.5: Determination of ∆pT

pT
by the inner tracker as a function of η, using the

Monte Carlo simulation.

2.2.2 Calorimeter

The DØ calorimeter is a sampling calorimeter using depleted uranium, lead and copper

as absorber materials, and liquid argon as sampling material. It consists of three

cryostats: the Center Calorimeter (CC), which covers the area |η| < 1.2, and the two

Endcap Calorimeters (EC), which extend the covered area up to |η| ≈ 4. In addition,

preshowers are placed in front of the calorimeters in the central and forward regions.

Central and endcap calorimeters

Each of the calorimeters is split up in three sections: an electromagnetic section (EM)

of approximately 20 radiation lengths, closest to the beam pipe, with relatively thin

uranium absorber plates, followed by a fine hadronic section further out, using thick

uranium plates as absorber. The outer part of the calorimeter is made up of the coarse

hadronic section, using thick copper or stainless steel plates as absorber material. The

hadronic section has a thickness of around 6 interaction lengths in the central calorime-
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ter, and around 9 interaction lengths in the forward calorimeter. The calorimeter is

pseudo-projective, meaning that the towers in the calorimeter are pointing to the in-

teraction point, but that the cells that the towers are made off are not projective. The

cells in the central region have a typical size of ∆η ×∆φ = 0.1×0.1; exceptions to this

are the cells in the third layer of the EM section, where ∆η × ∆φ = 0.05 × 0.05. This

is the area in which electromagnetic showers deposit most of their energy, and a higher

segmentation is desired for better resolution of the direction of electrons and photons.

In the very forward region with 3.2 < |η| < 4.0, where the physical size of the cells

would become tiny, the cells have a size of 0.2 × 0.2 in (η, φ). The energy resolution

of the calorimeter as it has been reached in Run I is ∆E/E = 15%/
√

E ⊕ 0.4% for

electrons and photons (with E in GeV). For charged pions and jets, these resolutions

are 50%/
√

E and 80%/
√

E respectively.

To augment the energy measurement in the intercryostat space between the central

and forward calorimeters, intercryostat detectors (ICD’s) are placed in this region (see

figure 2.6). They consist of an annular ring of 1.25 cm thick scintillating material,

divided into 16 sections and covering 1.1 < |η| < 1.4. The 16 pieces are further divided

into ∆η × ∆φ = 0.1 × 0.1 which are read out by photomultipliers through embedded

wavelength shifting fibers that collect and transport the light.

Preshowers

The preshower detector consists of two systems: a central system covering |η| < 1.3

(CPS), and a forward system covering 1.5 < |η| < 2.5 (FPS) (shown in figure 2.6).

Both are designed to improve the electron identification efficiency. The central system

consists of a lead radiator of two radiation lengths thickness at η = 0, followed by

three layers of scintillating material arranged in an axial, u-v geometry with a 22.5◦

stereo angle. Electrons are recognized based on the fact that muons and charged pions

traversing the radiator will only deposit energy due to ionization, while electromagnetic

particles will shower in the radiator.

The forward preshower detector also consists of a lead radiator with a thickness

of two radiation lengths [33], sandwiched between two layers of scintillating material.

Each layer is made from two thinner layers of scintillating fibers, arranged in a u-v

geometry with a 22.5◦ stereo angle. When a charged particle traverses the layer before

the radiator, its position can be measured with the scintillating fibers. Whereas a muon

and a charged pion will not shower in the radiator, and only deposit the equivalent of

one MIP2 in the layer behind the lead, photons and electrons will create a shower and

deposit most of their energy in the layer behind the lead. A photon will not deposit

energy in the first layer of fibers, thus allowing a separation of electrons and photons.

2A minimum ionizing particle (MIP) deposits a few MeV cm2/g in the material it passes through
due to ionization.
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Figure 2.6: View of the forward preshower, with an inset showing the geometry of the

fiber system.

In both systems, light collected by the scintillating fibers is transported by embed-

ded wavelength-shifting fibers, and read out by visible light photon counters.
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2.2.3 Muon Detector

The muon detector consists of three major parts, as is shown in figure 2.2:

• The Wide Angle Muon Spectrometer (WAMUS), covering |η| < 1;

• The Forward Angle Muon Spectrometer (FAMUS), covering 1 < |η| < 2;

• A solid-iron magnet creating a toroidal field of 1.8 Tesla.

Toroid Magnet

The toroid magnet is a square iron annulus 109 cm thick, weighing 1973 tons. Running

the coils of the magnet at 1500 Ampères, the magnet generates a magnetic field of 1.8

Tesla, with the field lines running in a plane perpendicular to the beam axis, vertically

in the side parts of the magnet and horizontally in the top and bottom of the magnet.

The iron of the central magnet also serves as the return yoke for the solenoid magnetic

field. The magnet is split in a central system, covering the WAMUS region, and two

forward systems, covering the FAMUS region.

WAMUS

The WAMUS consists of three detector systems: three layers of drift chambers with

proportional drift tubes (PDT’s), one inner layer of scintillators (A − φ counters) and

outer layers of scintillator (Cosmic Cap) [34]. The three layers of proportional drift

tubes are arranged in a barrel geometry with one layer inside the toroid, normally

called the A-layer, and two layers outside the toroid with one meter separation, called

the B- and C-layer. Their purpose is to provide muon identification, and a momentum

measurement independent of the central tracker. The chambers are constructed of

extruded aluminum tubes and are of varying size, with the largest being approximately

250 × 575 cm2. The (B- and C-) layers outside the toroid each consist of 3 planes of

tubes; the (A-) layer inside the toroid consists of 4 planes, with the exception of the

A-layer bottom PDT’s, which have 3 planes of tubes. The tubes are 10 cm across and

5.5 cm high (see figure 2.8), with around 24 tubes per chamber. The wires in each

tube are oriented along the field lines of the magnetic field, in order to provide the

position of the bend coordinate for the muon momentum measurement. Besides the

anode wire, each tube also contains a vernier pad used as a cathode. This vernier pad

consists of two metal strips that run along the length of the tube, of which the width

follows a self-repeating see-saw pattern with a cycle of 60 cm (see figure 2.7). The

relative amounts of the charge deposited on each of the strips indicate the position of

the passing particle. The tubes are filled with a non-flammable gas mixture of 80%

argon, 10% CH4 and 10% CF4. When operated at a voltage of 2.5 kV for the pads, and
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Outer vernier strip Inner vernier strip

60 cm

Figure 2.7: Schematic view of part of a vernier pad, showing two 60 cm cycles. The

black part represents the inner vernier strip, the grey represents the outer vernier strip.

5.0 kV for the wires, the drift velocity in this gas is around 10 cm/µs, with a maximum

drift time of 600 ns. The uncertainty in the hit position due to diffusion in this gas is

around 375 µm. Each wire has a time readout with a resolution of 0.1 ns on one side,

and is connected to a neighboring wire through a 20 ns delay jumper (see figure 2.9).

When a hit occurs on the wire, this setup enables the measurement of the drift time

Td, and the axial time Ta according to:

Td =
T1 + T2 − Tj

2
− Tw (2.1)

Ta = Tw +
Tj + T2 − T1

2
(2.2)

where Tw is the time it takes the signal to propagate from the jumper to the time

readout, and T1 and T2 are the times measured on each wire respectively. The resolution

of the time measurement is dependent on the position along the wire of the hit. If the

track passed the wire far from the electronics (near the jumper), the signal has to

travel a maximum of one wire length, and the dispersion of the signal creates an effect

that is equivalent to an axial resolution of 10 cm. If the track passes the wire close

to the electronics, the signal to the neighboring wire has to travel two wire lengths,

and the dispersion causes the axial resolution to degrade to 50 cm. Figure 2.10 shows

the hit residual in the drift plane for PDT hits, measured with collider data. This

hit residual is a measure of the true drift distance resolution σhit, as further explained

in section 4.2.5. The relative momentum resolution with which the WAMUS system

measures the tracks is shown in figure 2.11.

The A − φ counters are scintillators that cover the WAMUS PDT’s in the A-layer

between the calorimeter and the PDT tubes. They are segmented in φ-slices of 4.5◦, and

have a length along the beam axis of about 85 cm. A photomultiplier tube, connected

to the scintillator through multiple scintillating fibers, reads out the scintillators. The

scintillators have a timing resolution of 4 ns and provide a fast signal for triggering on
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Signal wireVernier pads

5.5 cm

10.0 cm

Figure 2.8: Schematic cross section view of an A-layer PDT assembly (b) and a B-

or C-layer assembly (a). The bottom figure shows a detailed view of one PDT tube,

including the vernier pads.

TdTa

T1

T2

Tj = 20 ns

Figure 2.9: Schematic overview of the PDT readout system. The black dot represents

a hit, which propagates to both time readouts T1 and T2. This enables the calculation

of the drift time Td and the axial time Ta using the 20 ns delay jumper.
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Figure 2.10: Hit residuals for PDT and MDT hits. This residual is a measure of the

true hit resolution σhit, as explained in section 4.2.5.

muons and for rejecting out-of-time cosmics and backscatter particles from the forward

region.

The Cosmic Caps cover the top and sides of the muon detector, as well as part

of the bottom, and are located outside the toroid. They are located outside the C-

layer, and at the bottom also partly on the outside of the B-layer. Their purpose is

to provide a fast signal to identify cosmic rays and, together with the A − φ counters,

to give a timestamp on a muon to determine in which beam crossing the muon was

produced. The time resolution of the scintillators is 5 ns, which can be improved by

offline corrections to 2.5 ns.

FAMUS

The FAMUS consists of three major systems: 3 layers of mini drift tubes (MDT’s), 3

layers of scintillating material, also known as pixels, and shielding around the beam

pipe to reduce trigger rates, fake track reconstruction and aging of the detectors [35].

The forward muon spectrometer is build from three layers of drift tubes, which have

a design position resolution in the drift plane of σx ≈ 0.7 mm. The A layer, which

is mounted on the inside face of the toroid, consists of 4 planes, while the B and C

layers (mounted on the outside of the toroid, with one meter separation) consist of 3

planes. Each plane consists of tubes, each having 8 cells, and each plane is divided

in 8 octants (see figure 2.12). The individual cells have an internal cross section of

9.4 × 9.4 mm2, and have a 50 µm tungsten-gold wire as the anode. The gas mixture

in the cells is a mixture of 90% CF4 and 10% CH4, which at a voltage on the cathode

of 3.1 kV gives a maximum drift time in the cells of around 60 ns, which is well within

the 396 ns beam crossing time. The cells are read out on one side of the wire with
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Figure 2.11: Relative momentum resolution of the stand-alone central (circles) and

forward (squares) muon system, measured using tracks reconstructed in the central

tracker and extrapolated to the muon system.

a 5.4 ns resolution. Because the cell is only read out on one side, the position of a

hit in a pixel detector along the wire is needed to determine the axial position of the

hit, thus allowing the measurement of the drift time. The efficiency of a single tube is

measured in a test setup to be close to 100%, but this is degraded by the thickness of

the tube wall to an efficiency of 94% for tracks perpendicular to the MDT plane. For

tracks with an inclination to the MDT plane, the thickness of the wall has less impact,

and the efficiency approaches 100%. Mounted on the face of each layer of MDT tubes

are single planes of scintillating material, divided in 8 octants of each 104 slabs of

scintillating material (see figure 2.13) [36]. The φ segmentation is 4.5 degrees; the η

segmentation for the outer nine rows of counters is 0.12, for the inner three it is 0.07.

The scintillators are read out by phototubes with an operating voltage of 1.8 kV. When

the threshold for passing particles is set at 10 mV, the efficiency for detecting single

particles in a test setup is 99.9%, with a time resolution better than 1 ns. Figure 2.10

shows the hit residual in the drift plane for MDT hits, measured with collider data.

The relative momentum resolution with which the FAMUS system measures the tracks

is shown in figure 2.11

2.2.4 Forward Proton Detector

The Forward Proton Detector (FPD) is designed to study diffractive processes, and

measures protons and anti-protons that are scattered at small angles [37]. The detector
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393 cm

Figure 2.12: One plane of MDT tubes, showing the division in octants (left) and a

schematic cut-away view of an A-layer MDT assembly (right).

elements are located up to 59 meters away from the interaction point. It consists of

9 spectrometers, formed by 18 Roman Pots and the magnets of the Tevatron. The

Roman Pots are stainless steel containers that allow a piece of scintillating material

to be inserted close to the beam, but outside of the machine vacuum. Each piece of

scintillator measures the (x, y)-position of the (anti-) proton passing through with a

spatial resolution of 80 µm, thus providing a 3-dimensional measurement of the position

of the particle, which is used in the reconstruction of the particle trajectory.

2.2.5 Luminosity Monitor

The luminosity is measured by identifying beam crossings containing non-diffractive

inelastic interactions [38]. This system distinguishes between beam-gas interactions

and beam-beam interactions, and whether there have been multiple interactions in the

crossing. To reach this goal, two hodoscopes are used, located on the inside face of the
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Figure 2.13: One plane of 2 octants of pixels, showing the segmentation in η and φ.

The units are in cm.

end calorimeters, 135 cm from the center of the detector. Each of these hodoscopes is

made of 24 wedge shaped scintillators, with fine mesh photo-multiplier tubes mounted

on the face of each wedge. The hodoscopes cover the pseudo-rapidity region 2.7 <

|η| < 4.4, providing an acceptance of (98 ± 1)% of all the non-diffractive inelastic

collisions. In case of a single interaction in the beam crossing, the system provides a

fast measurement of the position of the interaction along the beam axis, as well as a

measurement of the luminosity. The vertex position of the interaction is calculated by

measuring the difference in arrival time of particles in the opposing beam jets.

The resolution with which the detector measures both times is 194 ps, and ac-
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cordingly the resolution in the measured z-position of the interaction vertex is 10 cm.

The trigger rejects events with a vertex position |z| > 97 cm, which causes an ineffi-

ciency of < 1% due to the width in the vertex distribution. The luminosity is obtained

by measuring the rate of non-diffractive, inelastic collisions with a z-vertex within 97

cm of the origin of the detector and dividing it by the total non-diffractive inelastic

cross section as it has been measured by E710, E811 and CDF [39]. It is crucial for

this measurement to have an accurate correction for multiple interactions in one beam

crossing. The design is optimized to have high efficiency in distinguishing single in-

teraction crossings from multiple interaction crossings. A rejection factor (defined as

the ratio of the number of single to multiple interactions that passed the algorithm) of

12 has been reached, with an efficiency for single interactions of 90%. The measure-

ment of the luminosity has an uncertainty of 10%, mainly caused by the cross section

measurement and the uncertainty in the efficiency of the system.



Chapter 3

DØ Trigger System

The frequency of beam crossings at the DØ detector is 2.5 MHz. At the design lu-

minosity of 2.1 · 1032 cm−2s−1, this results in approximately 6 overlapping events per

beam crossing1. This event rate, combined with the average event size of 250 kilobytes,

makes it impossible to write all the events to tape without filtering. A dedicated system

of filters, called triggers, is thus needed to keep interesting physics events and reject

background events. Three levels of triggers have been designed to reach this goal:

• Level 1: A pipelined hardware stage using CFT fibers, preshowers, calorimetry

and the muon system to reduce the 2.5 MHz input rate to 10 kHz;

• Level 2: A second hardware stage refining and combining the Level 1 output with

multiple preprocessors and a global processor to reduce the 10 kHz rate to an

output rate of 1 kHz;

• Level 3: Partial event reconstruction using high level software algorithms running

on multiple PC’s, delivering a final event rate of 50 Hz to tape.

These trigger levels are explained in more detail below. Special emphasis is placed

on the Level 1 muon and jet triggers, since those triggers have been used to select the

data for this analysis. The Level 2 and Level 3 trigger systems are discussed in a more

general fashion.

1The typical luminosity at the time of data taking was approximately 1031 cm−2s−1, resulting in
an event rate of 334 kHz.
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3.1 Level 1

The Level 1 trigger is a hardware based system filtering the 2.5 MHz trigger rate to an

output rate of 10 kHz as input to Level 2, with minimal dead time. The time available

for the Level 1 trigger decision is 4.2 µs. The system consists of a number of hardware

components:

• Trigger Subsystems;

• Trigger Managers;

• Trigger Framework.

These components are made out of Field Programmable Gate Arrays (FPGAs), em-

bedded on electronics boards, in which the trigger logic is implemented. Each of the

Trigger Subsystems processes the data for each detector subsystem. The preshower

and CFT are combined in the Central Track Trigger (CTT), as shown in figure 3.1.

The Trigger Subsystem reports the physics results to a subsystem-specific Trigger Man-

ager. This Trigger Manager evaluates these results, and produces And-Or Input Terms

which are sent to the Trigger Framework. These input terms are flags which represent

information about the event. This can be physics information, e.g. a found muon, but

it can also be beam indicator signals, cosmic background vetoes or any information

about the event that is required for a Level 1 Trigger decision. The entire trigger

system contains a maximum of 256 of these And-Or Input Terms, which are combined

in And-Or combinations in the Trigger Framework (e.g. a found muon in the muon

Trigger Subsystem with a matching track in the CTT Trigger Subsystem). For every

beam crossing, the Trigger Framework can evaluate 128 of these And-Or combinations.

When at least one of these 128 combinations is positive, and the DAQ system is ready

for acquisition of data, the Level 1 Trigger Framework issues an accept, and the event

data is digitized and moved into a series of 16 event buffers to await a Level 2 trigger

decision. Each of the Trigger Subsystems is discussed in more detail in the following

sections.
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Figure 3.1: Level 1 and Level 2 trigger system overview. The acronyms are explained

in chapter 2 and appendix C.
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3.1.1 Central Track Trigger

The Level 1 Central Track Trigger (CTT) uses the following detector elements [40]:

• Axial fibers of the Central Fiber Tracker;

• Axial strips of the Central Preshower;

• Forward Preshowers strips;

• Forward Proton Detectors.

At Level 1, no information is available from the CFT stereo fibers and the CPS stereo

strips. The trigger is split up in a central part, using the Central Fiber Tracker and

the Central Preshower, and a forward part, consisting of the Forward Preshower strips

and the Forward Proton Detectors.

The central trigger is divided in 80 sectors in φ. For each of these sectors, the

central trigger determines the number of tracks per pT interval, as well as the number

of fibers hit. There are 4 pT intervals available:

• 1.5 - 3 GeV/c;

• 3 - 5 GeV/c;

• 5 - 11 GeV/c;

• 11 - 1000 GeV/c.

In addition, the trigger also reports the number of tracks that have been successfully

matched with a cluster in the central preshower. The tracks found are reported to the

Trigger Manager, the Level 1 Muon Trigger and Level 2 preprocessors. A typical Level

1 trigger that uses a CTT term will fire on the presence of a track that matches with

a muon object, on a single high pT track or multiple low pT tracks. At the time the

data set under consideration for this analysis was taken, the CTT was inactive.

The forward trigger combines clusters in the backward u- and v-layers of the FPS

with hits in the forward layer of the FPS to tag the clusters as electron- or photon-like.

The number of electron and photon candidates per quadrant is reported to the Level 1

FPS Trigger Manager. In each of the FPD detectors, track segments are reconstructed

and matched to form tracks [41]. The number of tracks found is reported to the Level

1 FPD Trigger Manager. Typically, a Level 1 FPD trigger will require one or two

diagonally opposed tracks found in the FPD detectors in combination with one or two

trigger towers found by the calorimeter trigger.
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3.1.2 Calorimeter Trigger

From the viewpoint of the Level 1 calorimeter trigger, the calorimeter is divided in

1280 projective towers, with 32 divisions in φ and 40 in η, resulting in a segmentation

of 0.2 × 0.2 in (η, φ) for each tower. In depth, these towers are divided in three

sections: an inner electromagnetic section, followed by a hadronic section and a coarse

hadronic section. The electromagnetic section is divided in 7 segments in depth, while

the hadronic section is divided in 3 segments with some variation depending on the

position of the tower. Only the electromagnetic and hadronic sections are used for the

Level 1 trigger decision since the coarse hadronic section typically generates too much

noise at Level 1. The inputs for the trigger are the transverse energies deposited in each

of the 1280 electromagnetic and 1280 hadronic sections. These transverse energies are

combined in the trigger manager into quantities, which are then compared to various

trigger criteria to pass or reject the event. Typically the trigger criteria require one or

more towers with an energy higher than a certain threshold energy (generally 3, 5, or

7 GeV per tower).

3.1.3 Muon Trigger

The Level 1 muon trigger uses both the wires and the scintillators, with additional

information from the Level 1 CTT (if available), to base a trigger decision on. The

detector information is used in two different trigger algorithms to detect muon tracks.

The first combines tracks that are found by the CTT with hits in the scintillators of

the muon system. The segmentation of the scintillators matches the segmentation of

the CTT in φ, and tracks that are found in a φ slice of the CFT are matched with hits

in the scintillators in the same φ slice. A timing gate of 25 ns is used in the scintillators

to reject background hits, while a 50 ns timing gate defines cosmic ray veto hits. In

the central system, high pT CFT tracks are matched with an A-layer scintillator hit, as

well as with a B- or C-layer scintillator hit, since these tracks penetrate the iron core of

the magnet between the A- and the B- and C-layers. In the forward system, all three

planes of scintillating counters are used to match the CTT track with scintillator hits.

The other algorithm uses a binary readout (i.e. no drift time information, but solely

hit/no-hit information) of the wires to find combinations of hits in different planes,

compatible with a straight line track (centroids), and verifies these with matching hits

in the scintillating counters. In the central system, the timing information of the

scintillating counter hit is needed because the maximum drift time in the PDT’s (500

ns) is greater than the bunch crossing time (396 ns). This is not needed in the forward

system, where the maximum drift time is 60 ns. A low pT trigger is defined using only

centroids found in the A-layer, while a high pT trigger is defined using correlations

between centroids found in the A-layer and the B- or C-layer. For both algorithms,
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four pT thresholds (2, 4, 7 and 11 GeV/c) are defined.

The information for each octant in each region is combined in the muon Trigger

Manager, which produces global muon trigger information. The muon trigger manager

makes a trigger decision based on the pT threshold (2, 4, 7 and 11 GeV/c), pseudora-

pidity region (|η| < 1.0, |η| < 1.5 and |η| < 2), quality and multiplicity information.

This trigger decision is sent to the Level 1 Trigger Framework where it is included in

the global physics trigger decision. Depending on the trigger list, the trigger will fire

on a single high pT muon, multiple low pT muons, or muons in association with other

physics objects (jets, electrons etc.). In case of an accept, the Level 1 Muon Trigger

reports the results to the Level 2 Muon Trigger, and on a Level 2 Accept, to the Level

3 Muon Trigger.

3.2 Level 2

The Level 2 trigger reduces the 10 kHz Level 1 accept rate by an order of magnitude

to 1 kHz as an input to Level 3, in an average time budget of 100 µs [42]. This is

done using multi-subdetector correlations of objects found in the event. The Level 2

trigger is running on alpha-processors, and consists of two stages: a preprocessor stage,

which processes data from each Level 1 trigger for use in the second stage, which is a

global processor that combines this data to make a trigger decision. There is a 1-to-1

mapping between Level 1 trigger bits and Level 2 trigger bits (see figure 3.1). In the

preprocessor phase, each detector system builds a list of trigger information. There are

preprocessors for the following subsystems:

• Central tracker;

• Preshower detectors;

• Calorimeter;

• Muon tracker.

Each of these preprocessors will be briefly discussed below. For each subsystem, the

Level 1 information is collected and transformed into physical objects like hits, clusters

and tracks. The maximum time budget for this preprocessing is 50 µs. After the

physical objects are formed, they are transmitted to the global processor. The global

processor correlates the information from the different detector systems to make physics

objects like jets, electrons and muons, and makes a trigger decision within maximally

75 µs. The total deadtime for this Level 2 system is 5%.
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3.2.1 Central Track Preprocessor

The Central Tracker preprocessor collects the tracks found by the Level 1 CTT trigger

and creates Level 2 tracks [43]. It performs the following tasks for each track:

• It converts the Level 1 binned pT information into a real pT value;

• Using the φ position at the innermost CFT layer and the measured pT , the φ

direction at the vertex is calculated;

• Using the above, the φ direction at the third layer of the electromagnetic calorime-

ter is calculated;

• The isolation of the track is measured.

The tracks are then ordered in pT and sent to the Level 2 global processor. The tracks

are maintained in memory for Level 3 readout in case of a positive Level 2 trigger

decision.

3.2.2 Preshower Preprocessor

At Level 1, the central tracks found by the central track trigger are matched to

preshower clusters in φ only. The larger time budget at Level 2 allows the preshower

preprocessor to improve this match [44]. To this avail, it uses the stereo information

from the u- and v-layers of the preshower to calculate the global η- and φ-positions of

the clusters. These clusters can then be matched with the tracks found by the Level 2

Central Track preprocessor and with calorimeter objects found by the calorimeter pre-

processor, to identify different physics objects.

3.2.3 Calorimeter Preprocessor

The calorimeter preprocessor runs three algorithms in parallel:

• Jet reconstruction;

• Photon and electron reconstruction;

• Calculation of missing transverse energy.

From the viewpoint of the Level 2 jet reconstruction algorithm, the calorimeter is

divided in towers, which are groups of calorimeter cells with the same η- and φ-position,

at increasing radial distance from the beam pipe. Around the towers that fired the

Level 1 calorimeter trigger, 5×5 groups of neighboring towers are clustered. The total

ET of all the towers in such a group must pass a minimum ET cut to be considered
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a jet candidate. The ET of the clusters is calculated assuming that the interaction

point is at z = 0. Jets that pass a minimum ET cut, as defined in the trigger list,

are passed to the Level 2 global processor. The photon and electron reconstruction

algorithm processes the electromagnetic towers given by the Level 1 calorimeter trigger

and turns them into seed towers. For each seed tower, it determines which of its

nearest four neighbors contains the largest ET , and the total electromagnetic and

hadronic energy in the seed tower and the nearest neighbor is calculated. Based on

the total electromagnetic energy, and the ratio of electromagnetic energy compared to

hadronic energy, the electromagnetic tower is considered an electromagnetic candidate

and passed to the Level 2 global processor. The missing transverse energy algorithm

calculates the vector sum of the ET in individual trigger towers, passed to it from the

Level 1 calorimeter trigger, and reports it to the Level 2 global processor if it exceeds

a certain value.

3.2.4 Muon Preprocessor

The Level 2 Muon Trigger uses all the wire hits and scintillator hits of the muon system

to detect muon tracks. It starts with a pattern recognition step in which straight track

segments are reconstructed in each layer of the muon detector. The pattern recognition

is done by shifting a 3-tube wide window over all the cells in an octant, looking for wire

triplets with a matching scintillator hit (if a scintillator layer is present), as illustrated

in figure 3.2. Combinations of hits are compared with a hit-map to determine which

3-tube combinations are compatible with a straight track segment. This hit-map is

created offline using Monte Carlo samples. After this pattern recognition step, found

track segments in the A-layer are then combined with track segments found in the B-

and C-layers to form Level 2 objects which contain η, φ and pT information.

The pattern recognition step is implemented in a Level 2 sub-level, which runs

before the actual Level 2 Muon Trigger. This sub-level incorporates 80 Digital Signal

Processors (DSPs) running in a parallel scheme, in which each DSP finds track segments

in a small region of the muon detector. The combination of the track segments into

tracks is performed in the Level 2 Muon Preprocessor, which reports the found tracks

to the Level 2 global processor. Upon a Level 2 Accept, the Level 2 objects are sent

to Level 3 to serve as seeds for a more precise muon track reconstruction.

3.3 Level 3

The Level 3 trigger is a software based system characterized by parallel data-paths

which transfer data from the detector front-ends to a group of Personal Computers,

known as nodes. It reduces the input rate of 1 kHz to an output rate of 50 Hz in an
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Figure 3.2: The Level 2 muon pattern recognition uses a three-tube wide window to

find track segments. The left plot shows a situation in which the trigger fires: three

wire hits and a scintillator hit (grey), compatible with a straight line track. The right

plot shows a situation incompatible with a straight line track, which therefore does not

pass the trigger.

available time of 100 ms. The data that is coming from each detector front-end moves,

upon a Level 2 accept, independently through the data system over the data pathway,

and is assembled at the assigned Level 3 processor node. A software program, called the

Event Tag Generator, then uses the Level 1 and Level 2 trigger bits to assign the event

to a certain event class, for example having a high pT muon, or two jets. The nodes are

running high level software algorithms to reconstruct those parts of the event that are

interesting for that particular event class, such as electrons, muons and jet candidates,

or interesting event topologies. Because of the increased time budget with respect to

Level 2, this reconstruction can use information with a higher granularity, e.g. drift

distances for the wire hits in the muon system, instead of mere binary information,

and can use calibration constants, to improve the quality of the reconstructed physics

objects. In addition, the SMT information can be used at this stage to improve the

central track reconstruction. The event is then accepted or rejected, based on this

reconstructed information.

3.4 Triggers used in data selection

The measurement of the b-jet cross section with a muon tag requires the presence of

both a reconstructed muon and a jet in the event. A trigger that requires both a muon

and a jet will therefore give the highest purity at the highest rate. Single muon or jet
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triggers give a lower purity, and due to the fact that they were prescaled2, they also

give a lower rate.

At the time of data taking, only a part of the Level 1 Trigger System was working

reliably enough to select muons and jets. Level 2 and Level 3 filters were either inactive,

or were running in Mark & Pass mode, which means that the filters were run on the

events that passed the Level 1 trigger, marked it if the event would pass the filter, but

irrespective of the Level 2 and Level 3 trigger decision the event was accepted. The

Level 1 Trigger System included the calorimeter trigger covering the |η| < 0.8 region,

as well as the muon scintillator trigger, albeit without the matching of tracks from the

CTT. Therefore, the trigger used to select the data requires:

• An A+C scintillator coincidence in the muon detector with |η| < 2.0, with no

requirement on the presence of a central track in the CTT;

• A 5 GeV energy deposit in the calorimeter with |η| < 0.8.

This trigger is combined under the name mu1ptxatxx CJT 5, where the first part,

mu1ptxatxx, corresponds to the muon part while the second part, CJT 5, refers to the

calorimeter part of the trigger.

3.5 Efficiency for the µ+jet Trigger

To calculate the efficiency of this trigger, we split it in two parts: the Level 1 muon

trigger efficiency, εµ
L1, and the Level 1 calorimeter trigger efficiency, εcal

L1 , and we calcu-

late both efficiencies separately. If we ignore the correlation between those two triggers

for now, we can state for the combined Level 1 efficiency:

εL1 = εµ
L1 · εcal

L1 (3.1)

In section 3.5.3 we will discuss the possible correlation, which turns out to be small.

The strategy to measure εµ
L1 and εcal

L1 is based on the use of independent reference

triggers. Events that are triggered by these reference triggers are fully reconstructed.

In the case that a jet or muon is present, it is checked if the corresponding trigger bit

is set. This allows the calculation of the trigger efficiency, as explained in the following

sections.

3.5.1 Calorimeter Trigger Efficiency

The calorimeter trigger efficiency for the CJT 5 trigger is calculated by selecting events

that are triggered by a muon trigger, akin to the mu1ptxatxx trigger explained above,

2A prescaled trigger accepts only 1 in every N events that would fire that particular trigger, where
N is the prescale factor
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with the additional requirement of a hit coincidence in the luminosity counters, which

signals the presence of a hard scattering. In addition, the presence of a reconstructed

jet passing quality and kinematic cuts (see section 5.2) is required. The CJT 5 trigger

efficiency is calculated by selecting those events in which the mu1ptxatxx CJT 5 trigger

fired, divided by the number of events in the selected sample, according to:

εcal
L1 =

Reconstructed jet and mu1ptxatxx CJT 5

Reconstructed jet and mu1ptxatxx
(3.2)

Figure 3.3a shows the efficiency of the CJT 5 trigger as a function of reconstructed,

uncorrected jet ET . Correcting the jet energy with the Jet Energy Scale (see section 4.1)

results in figure 3.3b. The statistical errors on the trigger efficiency are shown as the

vertical lines on the data points.

The dominant systematic error originates from the uncertainty on the Jet Energy

Scale correction, which is of the order of 7% (see section 4.1). To evaluate the systematic

error we first add the error on the Jet Energy Scale correction to the correction for

each separate jet, and the Level 1 efficiency is calculated. Then, the same is done but

subtracting the error on the Jet Energy Scale correction. The maximum difference of

these two efficiencies with respect to the efficiency calculated with no error on the Jet

Energy Scale correction is taken as the systematic error, which is illustrated by the

grey band on the bottom of figure 3.3b.

The Level 1 trigger efficiency shows a turn-on curve for jet energies below 40 GeV,

reaching 100% efficiency above that energy.
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Figure 3.3: Level 1 Jet Trigger efficiency, uncorrected (left) and corrected (right) for

the Jet Energy Scale. Data points show statistical errors only with the grey band

showing the relative systematic error.
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3.5.2 Level 1 Muon Trigger efficiency

The Level 1 muon trigger requires a coincidence of a scintillator hit in the A-layer and

a scintillator hit in the B- or C-layer. Two reference triggers, which both contain the

CJT 5 And-Or Input Term, are used to calculate the efficiency of this trigger, namely:

• 2JT LO, requiring two Level 1 calorimeter towers, one with ET > 3 GeV and

one with ET > 5 GeV. In addition, at Level 3, two jets reconstructed with a

simple cone algorithm and with ET > 10 GeV are required;

• CEM5 2CJT 5, requiring two Level 1 calorimeter towers with ET > 5 GeV, of

which one has to be in the electromagnetic calorimeter.

For each of these triggers, a sub-sample is extracted from the initial sample for which

the reference trigger fired, and an offline reconstructed tight muon that passed modified

quality and kinematic cuts, as defined later in section 5.1, was present in the event.

These modified quality cuts are the same ones as described in section 5.1, but with

the scintillator hit requirement on the muon tracks removed. This is done to avoid the

bias introduced by the fact that the standard quality cuts require both an A- and a B-

or C-layer scintillator hit, which is the same requirement that fires the trigger if the

timing of the hits is within the trigger gates.

Normally, requiring the presence of a reconstructed jet close to the muon practically

removes all cosmic muons. However, the sample that is extracted here does not have

that requirement and therefore still contains cosmic muons. The percentage of muons

in the sample that are actually cosmic muons is estimated using two methods: using

scintillator times associated with the muon track, and back-to-back muons. The first

method selects all muon tracks in the sample that have one or more scintillator hits

associated with them. The percentage of these tracks that have a measured time

on one of the scintillator hits that is outside the trigger gate is taken as the cosmic

muon contamination in the sample. This method results in a cosmic contamination of

(6.3±0.6(stat)±1.4(sys))%, where the systematic error is estimated from the number

of tracks that have both scintillator hits outside the trigger gate. The second method

counts the number of back-to-back muons in the sample, which gives the cosmic muon

contamination when divided by the total number of tight muons in the sample. In this

scenario a back-to-back muon is defined by a tight muon in the muon system, with

another muon at δφ > 2.5 radians, at least 2 wire hits in the A-layer and at least 3

hits in the BC-layer of the muon system. This results in a cosmic muon contamination

of (2.8± 0.4(stat)± 0.7(sys))%, where the systematic error is derived from decreasing

the δφ cut to 2.0 radians. We estimate the total cosmic muon contamination by taking

the average of these values and assign a systematic uncertainty to cover both methods:

(4.5 ± 1.8)%.
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Reference trigger Efficiency Statistical Error

2JT LO 57.8% 1.5%

CEM5 2CJT 5 60.7% 1.4%

Combined 59.0% 1.0%

Table 3.1: Level 1 muon trigger efficiencies measured with different reference triggers.

The efficiency of the mu1ptxatxx trigger is now calculated by selecting the events

in which the mu1ptxatxx CJT 5 trigger fired, divided by the number of events which

contain a reconstructed muon in the selected sample:

εµ
L1 =

Reconstructed muon and mu1ptxatxx CJT 5

Reconstructed muon and CJT 5 − cosmic contamination
(3.3)

Figure 3.4 shows the Level 1 muon trigger efficiency as a function of pT , η and φ

of the reconstructed muon for the 2JT LO trigger on the left hand side of the plot,

and for the CEM5 2CJT 5 trigger on the right hand side. The trigger shows a drop

in efficiency for high pT muons. This is not due to a physics or hardware effect, but

is shown with later runs using more statistics to be a statistical effect. However, for

the calculation of the µ+jet cross section this effect is taken into account, since we do

measure this efficiency over the run range used for the analysis. The drop in efficiency

seen in the plot for the Level 1 η efficiency for the 2JT LO reference trigger between

0.1 < η < 0.5 can also be attributed to statistics, since this effect is not seen for the

CEM5 2CJT 5 reference trigger. Both the φ plots show the effect of the hole in the

bottom of the detector in the φ region 4.2–5.0, where few muons are reconstructed.

Combining the two data samples, taking into account those events for which both

reference triggers fired, results in the final Level 1 muon efficiency as shown in figure 3.5

and summarized in table 3.1. The average efficiency of the Level 1 muon trigger,

integrated over η, φ and pT is 59.0+2.7
−2.4%, where the errors consist of the statistical

error of 1.0%, the difference between the combined Level 1 trigger efficiency and the

efficiency of the reference trigger (-1.2%, +1.7%), and an error of 1.8% for the cosmic

muon contamination. For the calculation of the cross section we will use the value of

the trigger efficiency in each bin separately, with the corresponding error in that bin.
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Figure 3.4: Level 1 muon trigger efficiency as a function of pT , η and φ, for the 2JT LO

reference trigger in the left plots and for the CEM5 2CJT 5 reference trigger in the

right plots. Missing data points (for example at φµ ≈ 4.8) are due to zero events in

the numerator.
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Figure 3.5: Level 1 muon trigger efficiency as a function of pT , η and φ, using both

reference triggers. The black curves are fits to guide the eye.
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3.5.3 Trigger correlations

Equation 3.1 is only valid if the correlation between the two separate triggers is zero.

A priori this is not immediately clear: particles in a jet that fire the jet trigger can

punch through the calorimeter, firing the muon trigger as well. Also, a muon, firing

the muon trigger, could possibly deposit enough energy in the calorimeter to fire the

jet trigger.

The correlation of the muon trigger with the jet trigger due to punch-through

particles is zero by construction. The denominator in the efficiency calculation for

the muon trigger is a muon with at least two wire hits in the A-layer, and at least

three wire hits in the BC-layer. Any punch-through particle that creates such a track

is indistinguishable from a real muon, and is treated as a real muon in the trigger

efficiency measurements. Only at a later stage is the cross section corrected for the

effects of punch-through (see section 5.1.2).

A muon passing through the calorimeter will fire the jet trigger if the muon deposits

more than 5 GeV in one trigger tower (0.2 × 0.2 in (η, φ)). The extent of this effect

on the jet trigger efficiency is investigated in two ways:

• By determining the energy a muon deposits in the calorimeter;

• By calculating the jet trigger efficiency, in the case that a muon is present in the

event.

The energy deposited by a muon in the calorimeter is measured by looking at the energy

in the calorimeter in a tower of 3 by 3 cells around an isolated muon track. This 3 by

3 tower is 2.25 times as big as the trigger tower, which causes an overestimation of the

energy deposited in a trigger tower. The energy deposited by the muon in a 3 by 3 tower

is only higher than 5 GeV in 0.23 ± 0.03% of the cases, which means that the energy

deposit of the muon will only fire the trigger in 0.23% of the cases. However, even if the

energy deposited is less than 5 GeV, it can still bias the jet trigger if the energy deposit

is close to a jet, and adds to the energy of the jet. To exclude any possible effect, we

also study the jet trigger efficiency in a sample of jets in which a reconstructed muon

is present. We again select a sample of events in which the mu1ptxatxx Level 1 trigger

fired, a reconstructed jet that passes the quality and kinematic cuts is present, and

a reconstructed muon that passes the quality and kinematic cuts is present. Then,

we calculate the efficiency as a function of jet ET according to equation 3.2, with the

added requirement of the reconstructed muon in both the numerator and denominator.

If we compare the result with figure 3.3, no significant deviation is observed, and we

conclude that there is no significant correlation between the Level 1 muon trigger and

the Level 1 jet trigger. Since the statistical error on the muon trigger is large compared

to this effect, we choose not to add an additional systematic error for this correlation.



Chapter 4

Offline Event Reconstruction

The events that pass all three levels of trigger criteria are reconstructed offline by

the DØ reconstruction package, named d0reco, version p10.15.03. Written entirely

in C++, this program uses a modular approach to reconstruct events by identifying

physics objects in each subdetector separately. The reconstruction of the two physics

objects of interest here, muons and jets, are discussed in detail in this chapter.

4.1 Jet Reconstruction

The jet reconstruction algorithm starts with the clustering of energy depositions in the

calorimeter into towers, which are then assembled into jets. An energy deposit is added

to a jet if its distance to the jet axis in (η, φ)-space is less than a cone size R, where

R is given by:

R =
√

(∆η)2 + (∆φ)2 (4.1)

with ∆η and ∆φ the distance of the energy deposit to the jet axis in η and φ re-

spectively. The definitions for the (η, φ)-direction and the transverse energy ET of the

reconstructed jet are given by the so-called Snowmass accord [29], that defines them

as:

η =

∑
i Ei

T ηi∑
i Ei

T

(4.2)

φ =

∑
i Ei

T φi∑
i Ei

T

(4.3)

ET =
∑

i

Ei
T =

∑
i

Ei sin(θi) (4.4)

where the suffix i denotes the i-th energy deposit in the jet.

The reconstruction of the jet proceeds in two stages, clustering and reconstruction

of the jet, using the following steps:
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1. The energy deposits are segmented in towers with a size of 0.1 × 0.1 in (η, φ).

Towers with ET < 0.5 GeV are ignored to reduce the contamination by noisy

cells. Then, starting with the tower with the highest transverse energy as a

seed, preclusters are formed in a cone of Rprecluster = 0.3 around this seed. Only

preclusters with ET > 1 GeV are kept;

2. Using all preclusters with ET > 1 GeV in a cone of size R, where R is the final

cone size, the jet direction and energy are estimated by equations 4.2-4.4, where

i then runs over the preclusters. In this analysis, R = 0.5 is used, unless stated

otherwise;

3. Around this jet direction, all energy deposits within a cone of size R are accu-

mulated, and the new (η, φ)-direction of the jet is calculated;

4. Step 3 is repeated until the direction is stable;

5. In the case that two stable reconstructed jets are separated by more than R but

by less than 2R, a new jet axis is defined at the midpoint of the two stable jets.

This new axis is then used as a precluster to possibly reconstruct a jet around;

6. If two jets share energy in clusters, they are merged if the shared energy is higher

than half of the energy of the lowest energy jet. If the shared energy is lower,

each of the shared clusters is assigned to the closest jet;

7. Jets with ET < 8 GeV are rejected.

Jet Reconstruction Efficiency

As explained in step 1 above, the jet reconstruction requires a tower with ET > 0.5

GeV to serve as a starting point from which the jet precluster is formed. This precluster

itself is required to have ET > 1 GeV. Absence of such a tower with ET > 0.5 GeV or

precluster with ET > 1 GeV will cause the energy that is deposited in the calorimeter

not to be assembled into a jet, resulting in an inefficiency. To investigate this possible

inefficiency, we study the distributions of transverse energies of towers and preclusters

which are used to seed jets. To calculate the inefficiency resulting from not finding

the tower, we parametrize the distribution of the energy of the highest energy tower

in the jet cone, at different energy ranges, using a Gaussian fit F with a logarithmic

argument:

F = e−(x−µ)2/σ2

, x =10 log(ET ) (4.5)

with µ the mean of the distribution, σ the width and ET the tower energy. The

efficiency to find the 0.5 GeV tower in a particular energy range can then be expressed

as the area under this fit above the 0.5 GeV cut, divided by the total area under the fit.
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This is then equal to the probability for a jet of a given ET to contain a tower above

0.5 GeV. The energy distributions for two jet energy ranges are shown in figure 4.1,

with the Gaussian fit applied. For transverse jet energies below 20 GeV, the 0.5 GeV

cut causes some inefficiency. With increasing transverse jet energy, the tower energy

distribution shifts up, and the cut does not cause any inefficiency. For the jets under

consideration in this analysis (ET > 20 GeV), this yields a 100% efficiency.

The inefficiency resulting from not finding a precluster with ET > 1 GeV is found

in a similar manner, resulting in the distributions shown in figure 4.2 for the same

two energy ranges. Here, a regular Gaussian fit is used to fit the data points. The

distribution of the precluster energy shifts up with increasing jet transverse energy,

also yielding an efficiency close to 100% for jets above 20 GeV.

Jets in the Monte Carlo simulation show a similar behavior as jets in the data,

reaching full efficiency for jets above 20 GeV.
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Figure 4.1: Tower transverse energy distributions for jet transverse energies between

10 and 20 GeV (left) and between 20 and 30 GeV (right). The vertical line represents

the 0.5 GeV cut on the tower transverse energy, as it is used in the reconstruction

algorithm.

Jet Energy Scale

The energy of the jet as it is measured by the jet reconstruction algorithm is not

exactly equal to the energy that the particles that constitute the jet deposited in the

calorimeter, due to a number of effects:

• Offset energy, which consists of:
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Figure 4.2: Precluster transverse energy distributions for jet transverse energies be-

tween 10 and 20 GeV (left) and between 20 and 30 GeV (right). The vertical line

represents the 1 GeV cut on the precluster transverse energy, as it is used in the

reconstruction algorithm.

- Uranium noise;

- The underlying event, i.e. the interactions of the spectator partons in the

proton and anti-proton;

- Pile-up from previous p̄p crossings;

- Multiple p̄p interactions during the same beam crossing.

The last two items have a minimal effect on the determination of the Jet Energy

Scale, due to the low luminosity at the time of the data taking;

• The response of the calorimeter to the particles that constitute the jet. The

energy measured by the calorimeter needs to be calibrated using a scale factor

Sjet to provide the exact energy that a particle deposited in the calorimeter;

• Showering of energy into and out off the jet cone. Particles that belong to the jet

can shower out off the defined calorimeter cone, causing their energy to be missed

during jet reconstruction. Also, other particles that do not belong to the jet can

shower into the defined calorimeter cone, causing their energy to be added to the

jet energy.

• Energy carried away by muons and neutrino’s. Muons will deposit a small fraction

of their energy in the calorimeter due to ionization. Neutrino’s in the jet are not

measured at all.
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If we want to use the jet energy as it is measured in the calorimeter to represent the

(true) particle jet energy, we have to apply a procedure that corrects for the above

effects. This procedure, the determination of the Jet Energy Scale (JES), defines the

particle level jet energy as [45]:

Eparticle
jet =

Ecalor
jet − Eoffset

Sjet · FS

(4.6)

where Ecalor
jet is the energy as measured in the calorimeter, Eoffset is the offset energy,

Sjet is the response of the calorimeter to the jets, and FS is the fraction of the jet

energy contained within the cone used. In the case of the presence of a muon that is

associated with the jet, the Jet Energy Scale needs an additional correction:

Eparticle
µ+jet = Eparticle

jet − Ecalor
µ + Eµ + Eν (4.7)

where Ecalor
µ is the energy that the muon deposits in the calorimeter, Eµ is the energy

of the muon itself, and Eν is the energy of the neutrino that is produced conjointly

with the muon. This correction is typically extracted in an averaged way from the

Monte Carlo simulation.

The effects of the uranium noise and the underlying event on the energy deposited

in the calorimeter are measured using dedicated minimum bias runs, from which the

correction Eoffset is deduced. The other two effects affecting the offset energy are both

a function of the instantaneous luminosity. During the data taking, the maximum peak

luminosity was 1.9 · 1031 cm−2s−1, with the typical luminosity approximately half of

that. This results in approximately 0.5 extra minimum bias events per bunch cross-

ing. The calorimeter electronic’s baseline subtraction eliminates the effect of multiple

interactions at this level, as well as the effects from pile-up, minimizing the impact of

these sources on the total ET of the jets.

The response of the calorimeter to the jets, Sjet, is measured using γ+jet events,

in which the photon is back-to-back with the jet. Using the energy of the photon,

the calorimeter response is calculated in different jet energy bins. The photon energy

is corrected using the EM scale, which is derived using di-electron data (notably the

Z-peak). This correction is of the order of 2%.

The out of cone showering of particles in the jet is estimated by comparing the

fraction of the energy contained within the jet cone, R = 0.5, with the energy in a

larger cone, Ejet limit:

FS =
Econe

Ejet limit

(4.8)

The size of this larger cone is based on Run I studies, and is 1.0 for the jets in the data

sample.
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Figure 4.3: Jet Energy Scale for different jet transverse energies as a function of ηjet.

The size of the grey band indicates the 7% error on the Jet Energy Scale.

The resulting Jet Energy Scale for data jets measured in this way, as defined in

equation 4.6, is shown in figure 4.3. The correction decreases for higher ET jets, and

increases slightly towards higher |η|, due to the effects of the intercryostat region where

there is less calorimeter coverage. The total error on the correction, shown by the grey

band, is approximately 7%, independent of jet ET .

The Jet Energy Scale described above has a dependance on different properties of

the jet, like the width of the jet, the number of towers in the jet and the fact that

a tower with high energy is present in the jet. It is measured using jets in data that

are taken with an electromagnetic trigger. In the data sample used for this analysis,

a calorimeter trigger is used which could result in jets which are different from the

jets used to measure the Jet Energy Scale. This would then result in an over- or

underestimation of the energy correction used. This phenomena has been investigated

and shown to have a negligible effect on the Jet Energy Scale measured.

Hot cell suppression

A hot cell is a calorimeter cell reporting energy which is not due to a particle depositing

energy in that cell. These cells are in general isolated, and tend to report energy in
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Calorimeter Ecell
cut = 100 MeV Ecell

cut = 300 MeV

CC 64% 93%

ICR 63% 91%

EC 59 % 88%

Table 4.1: Efficiency of NADA in different regions of the calorimeter. In this analysis,

a value of Ecell
cut = 100 MeV has been used.

multiple subsequent events. In the electromagnetic section of the calorimeter, this

energy is around 20-50 MeV. In the hadronic sections, it ranges from 100 MeV in

the fine hadronic section to 250 MeV in the coarse hadronic section. This energy is

partially suppressed at the hardware level, but additional suppression is performed on

an event-by-event basis, by running the NADA (New Anomalous Deposit Algorithm)

package over all calorimeter cells prior to the jet reconstruction to remove any cells

which appear to be hot [46]. The efficiency of this algorithm is shown in table 4.1 for

different values of the parameter Ecell
cut , which is the minimum cell energy, when a cell is

considered a hot cell and its energy suppressed if it has no neighboring cell with at least

this amount of energy. With this parameter set to 100 MeV, the misidentification rate

of genuine energy depositions as hot cells, which relates to the purity of the algorithm,

is negligible.

Jet Energy Resolution

The resolution of Jet Energy Scale corrected jets is extracted from di-jet events using

the asymmetry variable A, which is defined as:

A =
E

(1)
T − E

(2)
T

E
(1)
T + E

(2)
T

(4.9)

where E
(1),(2)
T is the transverse energy of each jet in the event. When plotted in different

bins of Eevent
T , where:

Eevent
T =

E
(1)
T + E

(2)
T

2
(4.10)

the distribution of this asymmetry variable expresses a Gaussian shape with width σA
for Eevent

T > 30 GeV. The relative ET resolution of reconstructed jets,
σET

ET
, can now be

expressed as:
σET

ET

=
√

2σA (4.11)

For events with low values of Eevent
T , Eevent

T < 30 GeV, the resolution cannot be

extracted from the data in this fashion. This is due to the fact that the jet recon-
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struction only reconstructs jets with uncorrected ET > 8 GeV. The Jet Energy Scale

correction of approximately 1.8 for low energy jets scales this lower bound up to 14.4

GeV. Therefore, there is no contribution of jets with ET < 14.4 GeV to the resolu-

tion. Jets can fluctuate out of the low ET bins, but due to the lower bound cut-off, no

jets can fluctuate into the low ET bins. This situation is different in the Monte Carlo

simulation, where the Jet Energy Scale correction is approximately 1.2, and the lower

bound is scaled up to 9.6 GeV. To avoid biases resulting from this effect, events with

Eevent
T < 30 GeV are not taken into account in the fit for the jet resolution function.

To measure the asymmetry variable, di-jet events are selected in which both jets

pass the standard jet quality cuts (see section 5.2), and with the requirement that:

• Both jets have |η| < 0.6, the same region in which the cross section is later

measured;

• The jets are back-to-back to ensure energy balance in the event: ∆φ > 175◦.

In addition, a number of quality cuts are imposed on the event:

• A cut on missing transverse energy: E/T < 0.7Eleading jet
T , to ensure reasonable

energy balance in the event;

• A cut on the total energy deposited in the calorimeter: Etot < 2 TeV, to remove

events with noisy calorimeter readout.

The resulting distributions for the asymmetry variable are shown in figure 4.4 for the

first three bins of Eevent
T . The first two plots, 4.4a and 4.4b, show the effects of the low

energy cut-off in the data. Figure 4.4a shows an artificially small resolution due to the

small energy range (14.4 GeV - 20 GeV) in which the resolution is measured. Figure 4.5

summarizes these plots by showing
σET

ET
as a function of Eevent

T for the data. The same

result is shown for the resolution in the Monte Carlo simulation. Both distributions in

figure 4.5 are fitted with a function of the form:

σET

ET

=

√
N2

E2
T

+
S2

ET

+ C2 (4.12)

Noise fluctuations affect the resolution in the low energy range with a N2/E2
T depen-

dance, while the nature of the incident particles and the intrinsic energy resolution

contribute to the S2/ET term. The C2 term represents the limited resolution at high

energies due to detector effects and imperfections. The shape of the function is based

on Run I experience and from first principles. The fit is performed in the range 30-120

GeV, as shown by the solid lines. The values for the fitted parameters are shown in ta-

ble 4.2 for both data and Monte Carlo simulation. The difference in resolution between

the data and the Monte Carlo simulation is demonstrated with the dotted curved line,
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Figure 4.4: Asymmetry distribution for data jets in different bins of Eevent
T . The first

two distributions, a) and b), do not represent the asymmetry variable, since they suffer

from a bias due to the cutoff on the jet energy.
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which is the squared difference between the fitted data and the Monte Carlo simulation

resolution functions. The Monte Carlo simulation underestimates the energy resolution

of the jets. This can be attributed to a lack of non-linearity corrections of the energy

measured in each calorimeter cell, as well as an incorrect modelling in the simulation

of the noise in the calorimeter. The energy resolution of jets in the data compared

to that in the Monte Carlo simulation explained above will be used at a later point

in the analysis to smear jets in the Monte Carlo simulation, to have the Monte Carlo

simulation mimic the data. In theory, the best way to have the Monte Carlo simulation

describe the data would be to smear the Monte Carlo cell energies, instead of the final

reconstructed jet energies. In practice this is not possible, due to the quickly improving

understanding of the calorimeter, and the rapidly changing Monte Carlo simulation.

The measured jet resolution is also used to unfold the distribution of jets, and for

this purpose the measured jet energy resolution is overestimated, due to two effects:

• Soft radiation resulting in a third jet in the event;

• Particle level imbalance.

Even though the jets are required to be back to back (∆φ > 175◦), energy assembled

in a possible third jet in the event coming from soft radiation can cause the energy

in the event to be less balanced, thereby worsening the resolution of the jet energy

measurement. This effect is investigated by looking at the jet energy resolution as

a function of the ET of the third jet in the event [47]. Extrapolating the jet energy

resolution to a zero energy of the third jet results in the resolution corrected for soft

radiation. The strategy is now to make slices in bins of Eevent
T , and fit a straight line

through the values of the resolution at different values of the transverse energy of the

third jet, E3
T . The intercept of the straight line at E3

T = 0 represents the corrected

resolution. Figure 4.6 shows the jet resolution, updated for this third jet correction,

with the dotted lines representing the errors resulting from this method, coming from

the error on the fit of the straight line and the error on the resolution. This correction

lowers the resolution by approximately 4%-point.

The particle level imbalance correction accounts for the fact that a cone algorithm is

used to define jets. At particle level, that is, before the particles enter the calorimeter,

N (GeV) S (GeV
1
2 ) C

Data 4.5 ± 1.7 1.3 ± 0.2 0.087 ± 0.034

MC 3.4 ± 0.72 0.91 ± 0.061 0+0.10
− 0.0

Table 4.2: Parameters resulting from the fit to the energy resolutions for jets in the

data and the Monte Carlo simulation.
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some of the tracks that should belong to the jet are outside the cone and are not taken

into account in the jet properties. When we later unfold the jet cross section, we need

to unfold such that we account for this effect. This correction is different than the Jet

Energy Scale correction that has been mentioned before, which corrects for the effects

of in- and out of cone showering of particles inside the calorimeter. To measure the

extent of the effect of the particle imbalance, we extract a sample of particle jets from

the Monte Carlo simulation, using the exact same cuts as explained above, and measure

the resolution using the same asymmetry variable. The resolution of the particle jets

obtained from the Monte Carlo simulation is shown in figure 4.7. We can now write

the true resolution that can be used for the unfolding as a convolution of the measured

jet resolution, the soft radiation effect and the particle imbalance:

(
σET

ET

)2

True

=
(

σET

ET

)
Cal

⊗
(

σET

ET

)
Soft Rad

�
(

σET

ET

)
Part Imb

(4.13)

The first convolution represents the third jet correction as explained in the previous

paragraph. This is not merely a squared difference, since it uses a linear extrapolation

to E3
T = 0 GeV for each value of Eevent

T to get the updated value of the resolution. The

second does represent a squared difference:

(
σET

ET

)2

True

=

((
σET

ET

)
Cal

⊗
(

σET

ET

)
Soft Rad

)2

−
(

σET

ET

)2

Part Imb

(4.14)

Figure 4.8 shows the resulting true jet resolution. The dotted lines represent the total

systematic error on the jet resolution, resulting from the fits to the data points, the

error on the soft radiation correction and the error from the particle imbalance.
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Figure 4.6: Jet energy resolution, corrected for the effect of a possible third jet in the

event. The dotted lines represent the errors coming from this correction.
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Figure 4.7: Jet resolution for particle jets obtained from the Monte Carlo simulation.
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Figure 4.8: Jet resolution in the data, adjusted for both soft radiation corrections and

particle imbalance corrections. The dotted lines represent the errors on the resolution.
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Jet Direction Resolution

The resolutions of the jet direction measurement becomes important in the analysis

when Monte Carlo templates are used to fit to the data. These templates use the

relative pT of the muon with respect to the combined µ+jet axis, and are therefore

sensitive to the jet axis direction. Especially the difference between the Monte Carlo

resolution and the data resolution is important. To get a handle on the resolution of

the jet direction, samples of di-jet events are extracted from the data and the Monte

Carlo simulation using the same selection criteria as in the previous section. For these

events, the differences in η and φ between the two jets are shown in figure 4.9 for both

data jets and Monte Carlo jets. The difference in φ is sensitive to the resolution, since

it is the deviation of one jet from the back-to-back axis in di-jet events. The difference

in η is less sensitive to the resolution of the measurement of the η direction of the jets,

since there is no need for an energy balance in η. Since we are considering central jets

here, we assume that the resolution in η is similar to the resolution in φ. The absolute

value of the resolution is not directly important for this analysis; it is important for

the Monte Carlo templates deduced later that this resolution is similar in the data as

in the Monte Carlo simulation, as can be concluded from this study.
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Figure 4.9: Difference in η- and φ-direction between jets in di-jet events in data (black

circles) and the Monte Carlo simulation (grey histogram). The vertical scale is arbi-

trary.
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4.2 Muon Reconstruction

The reconstruction of local muon tracks (i.e. measured in the muon system only) from

single hits proceeds through a number of steps:

• The reconstruction of raw data (i.e. the times measured at the readout of the

channels in the muon system) into positions and times of hits in scintillators, and

positions and drift circles of wire hits;

• The combination of reconstructed wire and scintillator hits in each layer into

straight lines, called segments;

• A fit of reconstructed segments in the A-layer with reconstructed segments in the

B- and C-layers to measure the momentum of the muon.

An event display of a reconstructed muon track is shown in figure 4.10, displaying the

geometry and indicating the reconstructed wire and scintillator hits, as well as the

reconstructed segments. Fitting the two segments results in the reconstructed muon

track, which is not shown in the figure. In the following sections, we will first discuss the

reconstruction of local muon tracks. Then, an overview will be given on the efficiencies

and the resolutions of each step in the reconstruction algorithm, to conclude with some

calibration issues.

4.2.1 Hit Reconstruction

The tracking in the muon system uses three different types of detectors:

• Scintillators;

• Proportional Drift Tubes in the central muon system (PDTs);

• Mini Drift Tubes in the forward muon system (MDTs).

The hits in the scintillators are used to trigger on events and to determine the time

of flight of particles passing through the counters. Additionally, they give a position

of the track. Especially in the forward system, where the MDTs do not provide a

measurement of the track position along the wire, hits in the scintillating counters are

required to measure the axial, or φ, position of the track1. In the central system, they

improve the axial position measurement of the track.

Because of the dual time read out (see figure 2.9), the wire hits in the central system

provide a measurement of the drift time and the axial time. The axial time determines

1The axial position is the position along the wire. Since the wires are directed parallel to either
the global x or y axis, the axial position corresponds to the φ position.



64 Offline Event Reconstruction

View 2, Side (Z-Y)

Run 2959 Event 3 Mon Oct 14 08:13:43 2002

Scintillator hit

A-layer segment

A-layer

BC-layer segment

PDT hits

C-layer

B-layer

Figure 4.10: D0ve display of a reconstructed muon track.
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the axial position of the passing particle, while the drift time is used as one of the two

inputs needed to calculate the distance in the drift plane of the particle to the wire.

The drift plane is the plane of the drift circle of the hit, perpendicular to the wire.

The other input to this drift time to distance conversion is the angle of the track in

the drift plane of the hit. This angle dependance is taken into account at the segment

reconstruction step, at which point the angle of the track is known.

In the forward system, the hits on the MDT wires provide one time measurement,

namely the sum of the drift and axial time. When the position of the track along the

wire is known (by using the position of a scintillator hit on the segment), the drift time

can be measured and used to calculate the distance of the passing particle to the wire.

The time to drift conversion relation for the MDT hits is not dependent on the angle

of the track in the drift plane of the hit.

4.2.2 Segment Reconstruction

The segment reconstruction finds track segments in each layer of the muon detector.

Starting with the wire hits in each muon wire chamber, a pattern recognition algo-

rithm is applied to reconstruct straight line segments. These line segments are then

matched with present hits in nearby scintillators for an updated position and a time

measurement. The algorithm can be separated in different steps:

1. Pattern recognition;

2. Segment fit;

3. Scintillator match;

4. B/C layer segment match;

5. Selection of the best segment.

Pattern recognition

The pattern recognition process is a recursive procedure, based on a linked-list algo-

rithm in which straight line links between individual hits are made, and matched to

form a segment [48]. The pattern recognition is done in a local coordinate system, in

which the wires are pointing along the z-direction, the wire tubes are stacked along

the y-direction and the planes of the chamber are stacked along the x-direction (see

figure 4.11). In the A-layer, where the chambers consist of 4 planes of tubes, the typical

number of hits on a segment is 3 to 4. In the B- and C-layers, where the chambers

consist of 3 planes of tubes, the typical number of hits is 2 to 3. At the start of the

procedure, each drift circle is assigned two hits that are located on the top and the
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Figure 4.11: Schematic view of a typical collection of hits in a layer. The drift circles of

the hits (the large circles) and the reconstructed segment (the diagonal line) are drawn,

showing the local coordinate system in which the pattern recognition is performed. The

wires are represented by the small dots.

bottom of the circle, to account for left/right ambiguities. Straight lines between the

hits, further called links, are made between each pair of hits that conforms to the

following requirements:

• The separation between the hits along the y-direction is less than δy (where

δy is set by default to 20 cm, which is twice the tube width), to ensure that

uncorrelated hits (i.e. hits that are not coming from the same segment) are not

matched;

• The two hits are not on the same plane, except when one is at the top of a drift

circle while the other is at the bottom. This ensures that fake segments that are

parallel to the planes are removed at an early stage. The exception permits those

instances in which a track passes through two neighboring tubes in one plane.

The direction of the link in the drift plane, α, is defined by the position of the hits

used:

tan(α) =

(
y2(α) − y1(α)

x2(α) − x1(α)

)
(4.15)

where xi and yi (i = 1, 2) are the positions of the hits, which depend on the drift time

td and the angle of the link α according to:

xhit = xwire − n · d(td, α) sin(α) (4.16)
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yhit = ywire + n · d(td, α) cos(α) (4.17)

with n = ±1 depending on whether the hit is on the top (+) or on the bottom (−) of

the wire, and where d(td, α) is the drift time to distance relationship. To approximate

α in the first step, the direction of the link is estimated by a straight line from the

origin of the detector (i.e. the nominal interaction point) to the position of the hit.

With this angle, the positions of the hits are calculated with equations 4.16 and 4.17,

and the direction of the link is calculated according to equation 4.15.

The links found in this initial step are matched in a recursive pattern, in which the

differences in angle and position of the links are compared to determine whether they

belong to a straight line segment. Whenever two links are found to be compatible with

a straight line segment, they are merged into a segment that contains all the hits of the

two original links. This segment is fitted with the hits it contains to determine its angle

and position (taking into account the angle dependance of the hits on the segment).

This procedure is repeated until all links have been attempted to be matched with all

other links, thus creating segments.

Segment fit

The fit of the segment to the hits is performed in a (x′, y′) coordinate system in which

the direction of the segment corresponds to the x′-axis. The origin of the coordinate

system is placed at the center of gravity of the hits used in the fit. The shortest distance

from each hit to the segment is now parallel to the y′ axis, so that a straight line fit

can be performed. The transformation from the (x, y) system to the (x′, y′) system

first requires the calculation of the center of gravity, according to:

xcog = 1
n

∑n
i=1 xhit

i

ycog = 1
n

∑n
i=1 yhit

i

(4.18)

where the suffix i runs over all hits on the segment.

The hits on the segment are then rotated by the current angle of the segment, by:
 x′

hit

y′
hit


 =


 cos(α) sin(α)

− sin(α) cos(α)





 xhit − xcog

yhit − ycog


 (4.19)

Then, a straight line can be fitted through the points (x′
hit, y′

hit), with χ2 defined as:

χ2 =
n∑

i=1

(
y′

i − m′x′
i − b′

δri

)2

(4.20)

where m′ = tan(α′) is the slope of the segment in the (x′, y′) coordinate system, b′ is

the intersection with the y′ axis and δr is the error on the drift distance of the hit.
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Differentiating χ2 with respect to m′, and setting it to zero to find the minimum of χ2

gives:

Dx′y′ − m′Dx′2 − b′Dx′ = 0 (4.21)

where:

DT =
n∑

i=1

(
Ti

δr2
i

)
T = x′, y′, x′y′, x′2 (4.22)

Differentiating with respect to b′ results in:

Dy′ − m′Dx′ − b′D1 = 0 (4.23)

where:

D1 =
n∑

i=1

(
1

δr2
i

)
(4.24)

Eliminating b′ from equations 4.21 and 4.23 results in the slope:

m′ =
Dx′Dy′ − D1Dx′y′

D1Dx′2 − D2
x′

(4.25)

Solving these equations generally results in a non-zero value of m′ and thus α′, changing

the angle α of the segment. Hence, to calculate the proper angle of the segment, the

above algorithm is repeated until the position and angle of the segment stabilize, which

typically takes 4 iterations.

The errors on the position and angle of the segment are calculated in the rotated

(x′, y′) system, where the covariance of the angle and the position is zero:

σm′ =
√

D1/ (D1Dx′2 − D2
x′) (4.26)

σb′ =
√

Dx′2/ (D1Dx′2 − D2
x′) (4.27)

Scintillator match

Initially, scintillator hits near the reconstructed segment are not taken into account in

the fit, since they do not add significant positional information in the drift plane due to

their physical size. However, in the coordinate along the wire, the size of the scintilla-

tors is comparable to the axial position resolution of the PDT hits. Also, as explained

above, in the forward system the scintillators provide the only position measurement

along the wire. Therefore, after the fit has converged and the direction and position

of the segment have been calculated using the wire hits, present scintillator hits are

matched to the segment by extrapolating the segment to the scintillator position in

the drift plane of the wire hits. If a match with a scintillator hit is found, the seg-

ment is refitted, now taking into account the scintillator hit position information. For
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segments found in the FAMUS, the position of the scintillator along the wire provides

information about the separation of the measured time of the MDT hit in drift time

and axial time, improving the fit of the segment to the drift circles. The position of

the segment is set to the center of the scintillator location, resulting in a resolution of

about 7 cm. If no scintillator match is found for a FAMUS segment, the position of

the segment is set to the center of the wire. The resolution is then equal to the length

of the MDT wire, divided by
√

12, resulting in a resolution of typically 60-90 cm. In

the WAMUS system, where the hits themselves provide a measurement of the position

of the segment along the wire, the z-position of the segment is the weighted average of

the z-positions of the hits (including the scintillator hit):

z =

∑n
i=1

(
zi

δzi

)2

∑n
i=1

(
1

δzi

)2 (4.28)

with error:

σz =
1∑n

i=1

(
1

δzi

)2 (4.29)

resulting in a typical resolution of 10 cm.

B/C Layer segment match

Segments are initially reconstructed in the individual layers of the muon system sepa-

rately. Due to the absence of a magnetic field between the B- and C-layers, segments in

the B- and C-layer are expected to be part of the same straight line segment, and can

be matched as such. To this avail, each pair of reconstructed B- and C-layer segments

found in the same octant and region is merged, and a new fit is performed using all

hits on both segments. The old B- and C-layer segments are kept available for the

selection of the best segment in the next step.

Selection of best segment

For a given group of hits, the algorithm finds multiple segments out of which the correct

one has to be selected for further track reconstruction. This selection is based on the

χ2 of the fit, divided by the number of degrees of freedom. In the case that segments

are reconstructed with more than 2 wire hits, the segment with the the lowest χ2/ndf

is chosen. For segments with only 2 wire hits, the segment that points best to the

primary vertex is selected.
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4.2.3 Local Track Reconstruction

A local track is a track that is measured by the muon system only, and not necessarily

matched with a track reconstructed in the central tracker. The local track reconstruc-

tion matches segments in the A-layer in front of the toroid with segments in the B- and

C-layers, before performing a fit to determine the momentum of the particle [49]. The

match of the segments before and after the toroid is made by relating the directions of

the segments in the global directions φ and θ with their global positions. In the case

of a match, a first estimation of the momentum is made by comparing the angles in

the drift plane of the two segments (see figure 4.12):

Pdrift =
0.3BD

| tan ϑ| (4.30)

where Pdrift is the momentum in GeV/c in the drift plane perpendicular to the wire

direction2, B is the magnetic field in the toroid (1.8 Tesla), D is the distance in meters

that the particle traverses through the toroid and ϑ is the angle difference between the

two segments. Using the initial parameters from this estimation, a non linear fit is

performed to find the best momentum compatible with the positions and directions of

the two segments. Starting with the position of the BC segment, the fit propagates the

track back stepwise through the toroid to the A-layer along a helix path, accounting

for energy loss in the toroid at each step, and taking into account multiple scattering

at two planes in the toroid.

4.2.4 Reconstruction Efficiencies

Hit Efficiencies

We measure the efficiency of the wire hits and the scintillator hits by using recon-

structed segments. For the wire hits, the segment is reconstructed with the tubes in

one plane ignored, to avoid biases of possible hits in that plane on the reconstruction

of the segment. We require the segment to be reconstructed with a hit on all other

planes, to make sure that the direction and position of the segment are well known.

We define the single plane efficiency as the efficiency that at least one reconstructed hit

is present in the relevant tubes3. For the PDTs this results in a single plane efficiency

of (92.7±0.4)%. We can also study the single PDT tube efficiency as a function of the

drift distance, which is shown in figure 4.13. Up to a drift distance of 3 cm, the single

hit efficiency is constant at around 90%, to drop rapidly for larger distances. This

2This is the same plane in which the drift angle α is calculated in the segment reconstruction;
therefore, Pdrift is not equal to pT but instead Pdrift = pT cos φ′, where φ′ is φ mod. π

4 .
3The segment can pass through multiple tubes in one plane due to a non-zero angle with the normal

of the plane.
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Figure 4.12: First estimation of track momentum by calculating the angle ϑ. d is the

x or y coordinate, depending on the octant of the segments.

inefficiency is due to the geometrical layout of the PDT cell, as shown in figure 2.8.

The pad, functioning as a cathode, does not span the entire width of the PDT cell,

which causes the corners of the cell to be less efficient.

For the MDTs, this algorithm results in a single plane efficiency of (89.2±0.4)%.

The single hit efficiency as a function of drift distance is shown in figure 4.13, where it

can be seen that the efficiency of the MDT tubes does not depend on the drift distance

of the track in the cell. Note that this number represents the single cell efficiency,

not the full efficiency of one MDT tube (which consists of eight cells, as discussed in

section 2.2.3). Another effect that lowers the efficiency is noise in the MDT cells, which

causes fake segments to be reconstructed.

The scintillator hit efficiency is measured using segments reconstructed with wire

hits only, which are extrapolated to the position of a scintillator. To ensure an accurate

extrapolation of the tracks, the segments are required to have at least one hit on each

plane of the wire chamber. This results in an efficiency of (97.2±0.2)% in the central

system, and (84.5±0.5)% in the forward system. Especially in the forward system, this

efficiency is lower than the design efficiency as mentioned in section 2.2.3 due to dead

channels.
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Figure 4.13: Single hit efficiency in the data as function of the drift distance for PDT

hits and MDT hits.

Segment Reconstruction Efficiency

To calculate the segment reconstruction efficiency, and to measure the resolution with

which muon tracks are reconstructed later on, central tracks are utilized. These tracks

are reconstructed using a package called TRF++, which uses a road-following algo-

rithm, followed by a Kalman filter to do pattern recognition in the inner tracker [50]. It

takes hit clusters, which represent the observed signals from the detector, as input. It

then proceeds by propagating tracks from detector surface to detector surface, picking

up hits from these surfaces, or misses in case of inefficiencies, while taking into account

the magnetic field and multiple scattering. After this pattern recognition step, the

tracks are refitted with a Kalman filter to determine their final parameters.

The reconstruction efficiency for the segments is extracted from the data sample

using these central tracks, extrapolated to the muon system [51]. To avoid the correla-

tion of the muon reconstruction efficiency with the Level 1 muon trigger efficiency due

to double counting of the scintillator efficiency, we require the event to be triggered by

the Level 1 muon trigger and a scintillator hit in both the A-layer and the B/C-layer

that matches the extrapolated track. The A-layer segment reconstruction efficiency is

calculated by extrapolating central tracks to the BC-layer and matching these tracks

with present reconstructed BC-segments (see figure 4.14a). These BC-segments are

required to consist of at least 3 wire hits in addition to the scintillator hit. The time

measured with the scintillator hit is required to coincide with the trigger gate to reduce

the contamination by cosmic rays in the sample. Reconstructed segments present in
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Data Monte Carlo

A-layer, central 92.7 ± 0.2% 90.8 ± 0.5%

A-layer, forward 91.5 ± 0.1% 91.1 ± 0.6%

BC-layer, central 90.6 ± 0.6% 95.8 ± 0.6%

BC-layer, forward 97.5 ± 0.1% 98.5 ± 0.3%

Table 4.3: Segment reconstruction efficiencies. The efficiencies for Monte Carlo simu-

lation are calculated by applying the same algorithm on the Monte Carlo simulation

as on the data.

the A-layer, with at least 3 wire hits, are spatially matched with this extrapolated

track in the drift plane to calculate the reconstruction efficiency of A-layer segments.

The efficiency found in this manner for A-layer segments is shown in figure 4.15 to be

92.7 ± 0.9% in the central region, and 91.5 ± 0.6% in the forward region, where the

errors are statistical only. The drop at |η| ≈ 1 is caused by the overlap region between

the central system and the forward system; the drop at φ ≈ 4.6 in the central system

is due to the reduced coverage of the A-layer in that region.

A similar method is applied to measure the reconstruction efficiency of BC-layer

segments. Central tracks are propagated to the muon system, where they are matched

with present A-layer segments, with at least 2 wire hits and a scintillator hit, as well as

with the scintillator hit in the B- or C-layer (see figure 4.14b). In the case of a match,

the central tracks are matched with possible reconstructed BC-layer segments with at

least 3 wire hits. This yields an efficiency of 90.6 ± 2.7% in the central region, and

97.5 ± 1.2% in the forward region, as summarized in table 4.3.

The efficiencies of the segment reconstruction algorithm in the Monte Carlo simu-

lation are extracted using the same procedure. Figure 4.15 shows the reconstruction

efficiency for A-layer segments, and the results are summarized for both the A-layer

and the BC-layer in table 4.3. The efficiencies found from the Monte Carlo simulation

are compatible with the efficiencies found in the data, except for the central efficiency

of the BC-layers. This can be attributed to an overestimation of the efficiency of the

B- and C-layers in the simulation, and effects of worse alignment in the data.

Local muon fit efficiency

The reconstruction efficiency of the fit algorithm is measured by using extrapolated

central tracks that have a matching A-layer and a matching BC-layer segment. The

spatial matches used between the central track and the segments are the same as the

ones used to calculate the respective segment reconstruction efficiencies. The local

muon efficiency is now calculated by dividing the number of muon tracks that pass the
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quality and kinematic cuts, and originate from the segments matched to the central

track, by the number of central tracks with matching segments. Table 4.4 shows

the efficiency of the track fitting algorithm in both the data and the Monte Carlo

simulation. The fit efficiency in the central system can be said to be on the low side.

This can be attributed to the angle resolution of the segments reconstructed in the

data, and to the fact that the muon fit only uses the segment with the best χ2, which

may not always be the correct segment. If two segments are not compatible with a

muon track, they cannot be fitted into a track, which causes the inefficiency. The

Monte Carlo simulations overestimates the fit efficiency if compared with the data.

which can be attributed to the fact that the Monte Carlo simulation uses an ideal

geometry, while the data is reconstructed with a less well aligned geometry.

Scintillator efficiency

Before we can proceed with calculating the final muon reconstruction efficiency, we

have to correct for the fact that we required the presence of scintillator hits, which

Central Track Central Track

A-layer

Toroid       

B-layer

C-layer C-layer

B-layer

A-layer

Toroid       
a) b)

Figure 4.14: Illustration of the calculation of the segment reconstruction efficiency.

Figure a) shows the calculation of the A-layer segment reconstruction efficiency, using

an extrapolated central track (curved black line) matched with a reconstructed BC-

layer segment (straight black line) and an A-layer scintillator hit (horizontal black

line). The dashed line represents the propagation of the central track through the

toroid, while the grey diagonal line represents a possible reconstructed A-layer segment.

Figure b) shows the calculation of the BC-layer segment reconstruction efficiency, using

an extrapolated central track matched with a reconstructed A-layer segment and a C-

layer scintillator hit.
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Figure 4.15: A-layer efficiency as a function of pT , η and φ for the central region on the

left side, and for the forward region on the right side. The data is represented by the

black points while the solid histogram shows the Monte Carlo simulation.
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Data Monte Carlo

Fit efficiency

central 55.3 ± 0.2% 60.0 ± 1.4%

Fit efficiency

forward 74.6 ± 0.4% 79.7 ± 1.0%

Table 4.4: Muon track fit efficiency. The efficiencies for Monte Carlo are calculated by

applying the same algorithm on the Monte Carlo as on the data.

was done to avoid biases with the calculation of the trigger efficiency. If the Level 1

muon trigger fired, this means that both A- and B- or C-layer scintillators are present

and located within a Level 1 road. This does not mean that they are also matched

to a muon track in the reconstruction. Thus, we have to calculate the efficiency that

the trigger fired, and that both scintillators are matched with the muon track. This

efficiency is calculated from the data by selecting events for which the muon trigger

fired and a central track is present that matches with a muon track. This correction

then represents the efficiency of matching two scintillator hits that are located in one

trigger road, and therefore fire the trigger, to a reconstructed muon track. The muon

track is required to have at least 2 wire hits in the A-layer, at least 3 wire hits in the

BC-layer and a converged fit. The scintillator correction is then calculated as:

εscintillator =
Number of muon tracks with matching scintillator hits

Number of muon tracks
(4.31)

This results in an efficiency of 94.1±0.4% in the central region, and 99.5±0.1% in the

forward region. This correction is calculated in the Monte Carlo simulation in a similar

fashion, except that the requirement that the trigger fired is dropped. This results in a

correction of 88.6 ± 1.1% in the central region, and 92.0 ± 1.0% in the forward region.

The correction is lower in the Monte Carlo simulation than in the data, due to the fact

that we do not require a fired trigger, and the scintillator hit efficiency is folded into

the resulting correction.

Overall muon reconstruction efficiency

Accounting for all the effects discussed above results in a reconstruction efficiency of

43.7±0.8% and 66.2±0.3% in the central and forward region respectively. In the Monte

Carlo simulation these numbers are 46.2 ± 0.2% and 65.8 ± 1.4% (see figure 4.16 and

table 4.5). To validate the algorithm that measures the efficiency to find a reconstructed

muon that passes the muon identification cuts, it is also extracted from the Monte

Carlo truth information. We count the number of produced Monte Carlo muons, and
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Data Monte Carlo Monte Carlo Truth

Reconstruction efficiency

central 43.7 ± 0.8% 46.2 ± 2.0% 44.0 ± 0.5%

Reconstruction efficiency

forward 66.2 ± 0.3% 65.8 ± 1.4% 62.1 ± 0.7%

Table 4.5: Overall muon reconstruction efficiencies. The efficiencies for Monte Carlo

are calculated by applying the same algorithm on the Monte Carlo as on the data; the

efficiencies in the Monte Carlo Truth column are calculated from the true Monte Carlo

information.

check if there is a reconstructed muon present in a cone of δR < 0.3. This results

in an efficiency of 44.0 ± 0.5% in the central system, and 62.1 ± 0.7% in the forward

system. The difference between the result of the algorithm applied on the Monte Carlo

simulation and the result from the Monte Carlo truth, 2.2% and 3.7%, is taken as the

systematic error on the measurement of the muon track reconstruction efficiency.
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Figure 4.16: Total efficiency to reconstruct a local muon track as function of pT , η

and φ, in the central system (left) and in the forward system (right). The data is

represented by the black circles, while the grey histogram represents the Monte Carlo

simulation.
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4.2.5 Resolutions

Hit Residuals

The drift distance resolution, σhit, with which the PDT and MDT wire hits are mea-

sured can be determined by studying the residuals of the hits with respect to recon-

structed segments. This is done using segments reconstructed with both B- and C-layer

hits, and the requirement that the segment has at least 4 hits in one of the layers. This

ensures that the segment has a large lever arm due to the distance between the B- and

C-layer, and that the direction of the segment is determined primarily by the position

and drift distances of the hits in the other layer. Since the hit system in the A-layer

is the same as in the B- and C-layers, except for the number of planes, we assume a

similar hit resolution for the A-layer as for the B- and C-layers. To calculate σhit for

the B- and C-layers, we remove one of the hits of the segment in the layer that has the

least number of hits, and refit the segment using the remaining hits. The distance of

the refitted segment to the removed hit, subtracted from the true drift distance of this

hit is the hit residual of that hit. This hit residual is further treated as not biased with

respect to the reconstructed segment. However, the segment has an error associated

with it, which is a function of the hit resolution and the number of remaining hits,

namely:

σ2
seg =

σ2
hit

N − 1
(4.32)

where σhit is the true hit residual for one hit, N is the original number of hits in

the layer, and σ2
seg is the segment resolution. The width of the residual distribution,

σresidual, can be written as:

σ2
residual = σ2

hit + σ2
seg =

Nσ2
hit

N − 1
(4.33)

and consequently:

σ2
hit =

N

N − 1
σ2

residual (4.34)

If we therefore plot the distribution of the hit residual for different values of N , we

can determine the true hit residual. Figures 4.17 shows this for PDT hits in the data

and the Monte Carlo simulation4 for N = 3, and the results for different values of N

are summarized in table 4.6. The single hit resolution for PDT hits in the data is

0.45 cm, while in the simulation this is 0.08 cm. Clearly the Monte Carlo simulation

underestimates the PDT hit resolution. This is caused mainly by the fact that the time-

to-drift conversion used is not well known in the data (see section 4.2.6). Furthermore,

the Monte Carlo simulation uses an optimized value of the uncertainty on the drift

4We used an inclusive bb̄ sample of 4500 events.
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N σres (cm) σhit (cm)

2 0.67 ± 1.1e-2 0.47 ± 7.5e-3

3 0.55 ± 3.5e-3 0.45 ± 2.9e-3

4 0.52 ± 9.3e-3 0.45 ± 8.1e-3

weighted ave. 0.45 ± 4.0e-3

N σres σhit

2 0.11 ± 8.2e-3 7.8e-2 ± 5.8e-3

3 0.10 ± 3.1e-3 8.5e-2 ± 2.5e-3

4 9.6e-2 ± 2.6e-3 8.3e-2 ± 2.3e-3

weighted ave. 8.1e-2 ± 3.9e-3

Table 4.6: Hit residuals for PDT hits in the data (left) and in the Monte Carlo simu-

lation (right).
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Figure 4.17: PDT hit residuals in the data (left) and in the Monte Carlo simulation

(right) for N = 3.

time measurement. Figure 4.18 shows the MDT hit residual distribution for N = 3 for

the data and the Monte Carlo simulation, and the results for different values of N are

summarized in table 4.7. In the data, the single MDT hit resolution is 1.1 mm. As

can be expected, the Monte Carlo simulation also underestimates this resolution, and

gives a single hit resolution of 0.8 mm. In the data, the time to drift relation is an

approximation of the true time to drift relation in the wire tubes, and is therefore less

accurate. The smearing in the Monte Carlo simulation turns out to be insufficient to

account for the detector resolution.

Segment resolution

The performance of the algorithm in terms of the resolution of reconstructed segments is

evaluated using the same Monte Carlo sample as used above, in which the reconstructed

segments are compared with the muons in the Monte Carlo simulation as they pass
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N σres (cm) σhit (cm)

2 0.17 ± 2.1e-3 0.12 ± 1.5e-3

3 0.15 ± 8.6e-4 0.12 ± 7.0e-4

4 0.12 ± 8.7e-4 0.10 ± 7.5e-4

weighted ave. 0.11 ± 7.8e-4

N σres σhit

2 0.11 ± 8.3e-3 7.8e-2 ± 5.8e-3

3 0.10 ± 2.1e-3 8.2e-2 ± 1.7e-3

4 8.9e-2 ± 1.2e-3 7.7e-2 ± 1.0e-3

weighted ave. 7.9e-2 ± 1.4e-3

Table 4.7: Hit residuals for MDT hits in the data (left) and in the Monte Carlo

simulation (right).
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Figure 4.18: MDT hit residuals in the data (left) and in the Monte Carlo simulation

(right) for N = 3.

the different muon layers. The top plots in figure 4.19 show the resolution of the

reconstructed segments in the central system in the drift angle α, the position in the

drift plane y and the position along the wire z. The α distribution is shown for single

layer segments, which typically have 3 or 4 wire hits. If we combine a B-layer segment

with a C-layer segment, the resolution improves due to the increased lever arm and

larger number of hits. This effect is shown in figure 4.20a. The resolution on the

angle α for a single layer is 7.8 mrad, and 1.2 mrad for BC-layer segments. The other

distributions also show a resolution corresponding to the design limits: 1 mm for the

local y coordinate and 80 mrad for the φ direction of the segment [34]. The bottom

plots in figure 4.19 show the pull distributions for the same variables, demonstrating

a correct assignment of errors to the segments. The top plots in figure 4.21 show the

position and direction resolution for reconstructed segments in the forward regions. The

α distribution for single layer segments shows a resolution of 11 mrad. For combined
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Figure 4.19: The top three plots show the segment reconstruction resolutions in α, y

and z in the central system, with the bottom plots showing the pull distribution for

these variables.

BC-layer segments (as shown in figure 4.20b) this reduces to 1.2 mrad. The position

distributions are compatible with the design limits of approximately 0.7 cm for the local

y coordinate, and 80 mrad for the φ direction [35]. The bottom plots in figure 4.21

show the pull distributions, indicating correct error assignments to the reconstructed

segments.

Local muon resolution

The resolution of the muon track momentum measurement is calculated by using cen-

tral tracks. These tracks are propagated to the A-layer of the muon system, where

they are matched with tight muon tracks (see section 5.1). Since the pT resolution of

central tracks is significantly better, approximately 5% in the pT range of muons in the

sample (see figure 2.5), we can use these tracks to determine the resolution of the local

muon track. A data sample of isolated muons is divided in different bins of muon pT .

For each bin we produce the distribution of:

δ = pC
T


(

Q

pT

)C

−
(

Q

pT

)L

 (4.35)
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Figure 4.20: Resolutions for combined BC-layer segments in the central system (a) and

the forward system (b).

 (rad)recoα - MCα
-0.04 -0.02 0 0.02 0.04

E
n

tr
ie

s/
0.

00
2 

ra
d

0

10

20

30

40

50 a)
α∆

 = 5.8e-4µ
 = 11e-3σ

 (cm)reco - yMCy
-0.4 -0.2 0 0.2 0.4

E
n

tr
ie

s/
0.

01
 c

m

0
10
20
30
40
50
60
70 b)

y∆
 = -1.9e-3µ
 = 7.6e-2σ

 (cm)reco - zMCz
-40 -20 0 20 40

E
n

tr
ie

s/
0.

8 
cm

0
10
20
30
40
50
60 c)

z∆
 = 0.11µ
 = 7.2σ

Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5

E
n

tr
ie

s/
0.

1

0
5

10
15
20
25
30 a)

αPull 
 = 1.5e-2µ
 = 0.99σ

Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5

E
n

tr
ie

s/
0.

1

0
5

10
15
20
25
30
35 b)

Pull y
 = 6.4e-2µ
 = 0.96σ

Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5

E
n

tr
ie

s/
0.

1

0
5

10
15
20
25
30
35

c)
Pull z

 = 8.3e-3µ
 = 1.01σ

Figure 4.21: The top three plots show the segment reconstruction resolutions in α, y

and z in the forward system, with the bottom plots showing the pull distribution for

these variables.
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with the C superscript denoting central tracks and the L superscript denoting local

muon tracks. If we now fit a Gaussian shape to the distributions of δ, the width of

the distribution represents the resolution of the local muon in that pµ
T bin. Figure 4.22

shows this resolution ∆ of the local muon track momentum for data, as well as for the

Monte Carlo simulation, where:

∆ = σ(δ) (4.36)

The difference between the two resolutions is obtained by subtracting in quadrature,

and is displayed by the grey dotted line. The significantly worse resolution in data can

be attributed to calibration problems in the data, as discussed in section 4.2.6. The

direction resolution in η and φ of the muon tracks is also measured using central tracks.

To estimate the η resolution of the muon tracks, central tracks are propagated to the

A-layer, and matched with tight muons in pT and φ. The φ resolution is measured in

a similar fashion. These resolutions are shown in figure 4.23 for data and the Monte

Carlo simulation. The η resolution of the Monte Carlo simulation is better than the η

resolution in the data. This is again due to the underestimation of the pT resolution in

the Monte Carlo simulation. Smearing the pT of the local muon tracks in the Monte

Carlo simulation results in similar η resolutions in the simulation as in the data, due

to the fact that both the pT and the η depend on the angle of the A-layer segment

(αA). If we smear the radial component of this angle (i.e. the pT ), while keeping the pz

component constant, this results in proper corrections for pT and η. The φ resolution in

the data is slightly worse than the resolution in the Monte Carlo simulation. We smear
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Figure 4.23: Muon direction difference in a) ηlocal − ηglobal and b) φlocal − φglobal. For

the Monte Carlo simulation the same quantities are shown in c) and d).

the φ direction of the local muon tracks in the Monte Carlo simulation by keeping pT

constant and smearing px and py.

Note, that theoretically the proper way of making the Monte Carlo describe the

data better would be to smear the individual hits with the proper smearing, instead

of smearing the reconstructed muon track properties. However, practically this is only

possible once the hardware and software systems used are stable enough to warrant

such an implementation. During the time of data taking, both the detector and the

reconstruction software were changing rapidly. Therefore we have chosen to smear the

final kinematic properties of reconstructed muons, instead of the individual hits.

4.2.6 Calibration issues

As has been shown, the Monte Carlo simulation does not represent the data well. This

is mainly caused by insufficient calibration of the muon system. A number of important

calibration issues are discussed here.
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Time to drift relations

Due to the geometry of the PDT tubes, the time to drift relation in these tubes is not

only a function of the drift distance, but also of the angle that the tracks make with the

normal of the plane. This relation has been measured using a test-stand setup using

cosmic ray muons passing through one PDT chamber, consisting of four planes [52].

Scintillators have been placed on top of the chamber and at the bottom to provide a

position measurement as well as a time stamp. Using the hits in the scintillators and the

wire hits, a track segment is reconstructed, providing the distance of the track to each

wire. This information, together with the t0 from the scintillators, allows a function to

be fit that relates the drift time and angle measured to the true drift distance. This

function is then used in the reconstruction of the data. In the Monte Carlo simulation,

the same function is used to reconstruct the drift distance of the PDT hits. However,

the inverse of the function is used in the detector simulation to convert drift distances

into drift times. Any error on the time to drift relation will hence give an error on the

hit resolution in the data, but not in the Monte Carlo simulation.

The time to drift relation for the MDT tubes is much simpler, and does not depend

on the angle of the track passing through it. It has been measured using a similar

test-stand setup as explained above.

Geometry

The alignment of the geometry plays a major role in the proper determination of the

momentum of the local muon tracks. For the data used in this analysis, no alignment

was available using reconstructed tracks in collision data. The alignment used for the

determination of the location of the chambers originates from a survey done before the

start of Run II, on the relative location of each chamber with respect to a common

reference point [53]. This survey is only accurate up to a few millimeters. The Monte

Carlo simulation uses a perfect description of the geometry, since it uses the same

geometry in the simulation as in the reconstruction of the data. This gives rise to

better track momentum resolution in the Monte Carlo when compared to the data

resolutions.

t0 corrections

The t0 for a detector element is defined as the time it takes for a particle produced in

the collision to reach that detector element, in addition to the time required for the

produced signal to propagate to the readout. This quantity is needed to calculate the

correct drift time and axial time. In the optimal case, the t0 is measured from the

collider data for each tube in the muon detector separately. However, these quantities

were not available for the data used in this analysis. To still get a reasonable handle on
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this quantity to be used in the reconstruction, the corrections are extracted from the

Monte Carlo simulation. This again introduces an extra smearing on the resolution of

the muon hits, which is not present in the Monte Carlo simulation.
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4.3 DØVE

DØVE (DØ Visualization Environment) is the DØ specific implementation of an AT-

LAS package called ARVE (Atlas Reconstruction and Visualization Environment) [54].

Originally used primarily as a graphical debugging tool for reconstruction software and

visualization of detector geometries, it has evolved into a light weight event display

which is now used, among other things, as a monitoring tool for online data taking, as

well as a public display of events [55].

To display its objects, DØVE uses two main interfaces: Scenes and Representa-

tions. A Scene is anything that outputs information to the user, be it text, graphical

or output to a file. For each such output, a different implementation, inheriting from

the Scene interface, has to be implemented. Representations are wrappers around

non-graphical objects which use the properties of those objects to define a graphical

representation of that object that can be drawn on a Scene. Both classes are managed

by the DisplayControl class that holds one or more Scenes and to which multiple Rep-

resentations can be added. Finally, the DØVE singleton handles the DisplayControl,

and governs the internal graphical event loop. This event loop is separate from the

event loop of the DØ reconstruction framework. After each event has been processed

by the DØ framework event loop, DØVE starts its own event loop in which the event

is drawn on the Scene. Only when the DØVE event loop is terminated by the user,

control is returned to the DØ framework.

Currently, representations for all subdetectors are implemented, except for the

preshowers and forward proton detectors, as well as representations of reconstructed

physics objects. The central tracker representation displays the geometry, hits and

reconstructed central tracks. The calorimeter is represented by displaying cells with

high enough energy, as well as by a lego plot. The representation of the muon system

displays a wire frame of all detector elements in addition to drift circles for the wire

hits and highlighted scintillators when hit.

A detail of the DØVE event display is shown in figure 4.10. Here, the Scene shows

representations of the central muon chambers, reconstructed PDT hits and two fitted

segments with matched scintillator hits.

Figure 4.24 shows four different views of a bb̄ event, including a total view of the

detector, showing the muon system with two muons, and reconstructed central tracks

(a). Figure 4.24b shows an (r, φ) view of the same event, in which the jets, central

tracks and muons are visible. The lego plot in figure 4.24c again shows the two jets,

while the last plot shows a zoom-in on the central tracker.
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Figure 4.24: 3-Dimensional D0ve display of a di-jet event in which both jets have a

reconstructed muon associated with it.
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Chapter 5

Muon + Jet cross section

This analysis uses data taken with the DØ detector in the period February 28th until

May 10th, 2002. The sample is divided in 4 parts, with each part corresponding to

a specific trigger setting. Events in these samples are then selected based on trigger,

physics and quality criteria, namely:

• The run is qualified as good in the run quality database. This requires, among

others, a fully operational central muon system and calorimeter, an operating

toroid magnet and no significant other hardware or trigger problems during the

run;

• A muon + jet Level 1 trigger requirement, mu1ptxatxx CJT 5, as described in

section 3.4;

• The presence of a reconstructed muon and a reconstructed jet, with the additional

constraint that the muon lies in a cone of radius δR(jet, µ) < 0.7 around the jet

axis, where δR =
√

(∆η)2 + (∆φ)2.

Table 5.1 lists the resulting data sample, containing 361,037 events, corresponding to

a total integrated luminosity of 3.4 pb−1.

In this chapter, we will first discuss the identification criteria for muons and jets

before proceeding with the calculation of the µ+jet cross section.

5.1 Muon Identification

Due to the low reconstruction efficiency of tracks in the central tracking system during

most of the data taking period, the standard muon reconstruction and identification

cannot use the central tracking, but has to rely solely on the information of the muon

system. To ensure a reasonable momentum and direction measurement of the muon,
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Trigger Number of events Integrated luminosity (nb−1)

global CalMuon4.20 92900 862.7

global CalMuon5.00 33201 331.1

global CalMuon5.01 209190 2003.0

global CalMuon5.10 25746 246.0

Total 361037 3442.8

Table 5.1: Data sample used in the analysis.

it is required that the muon passes all three layers and hits a minimum number of

detector components in these layers:

• At least 2 wire hits in the A-layer;

• At least 1 matching scintillator hit in the A-layer;

• At least 3 wire hits in the combined B- and C-layer;

• At least 1 matching scintillator hit in the B- or C-layer.

In addition, the fit of the A and B/C layer segments is required to converge. This fit

does not always converge, which causes the inefficiency shown in table 4.4 and discussed

in section 4.2.4 (page 73). Furthermore, kinematic cuts are applied to the muon:

• pµ
T > 6 GeV/c, to be well above the implicit cut of around 3 GeV/c that a muon

requires to penetrate the iron core of the muon toroid;

• |ηµ| < 0.8, to avoid the overlap regions between the forward and central system

at |η| ≈ 1. This η is measured by the muon system.

Figure 5.1 shows the pT , η and φ distributions of the muon after applying the above

selection criteria. Even though the η distribution is symmetric around η = 0, as

expected, it falls rapidly. This can be explained by the combined effect of the Level 1

trigger efficiency (see figure 3.5) and the reconstruction efficiency (see figure 4.16).

The φ distribution clearly shows the hole in the detector at 5π
4

< φ < 7π
4

, as well

as the octant boundaries at φ = π
4

and φ = 3π
4

, where the muon wire chambers change

orientation (the effect of the octant boundaries at φ = 5π
4

and φ = 7π
4

are also present

but obscured by the larger effect of the hole in the bottom). The pT of the muon is

corrected for the energy loss of the muon in the calorimeter, due to ionization. This

loss is approximated by a parameterization which is a function of the pT and η of the

muon, based on Run I measurements. The correction is around 2 GeV, as is shown by

figure 5.2.
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Figure 5.1: pT , η and φ distributions of reconstructed muons, after applying kinematic

cuts. The statistical errors on the data points are so small that they are hidden by the

data points.
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Figure 5.2: Energy loss of a muon as it traverses the calorimeter.

5.1.1 Cosmic ray contamination

A major source of background to muons produced in the collisions are cosmic ray muons

that pass through the muon detector and mimic a muon coming from a collision. As has

been shown in Run I [56], the requirement of the jet association removes the majority

of this contamination. This effect can also be seen if we select tight muons associated

with jets, in events that are taken on a jet trigger, and count how many of these muons

have a scintillator time that is outside the trigger gate, i.e. cosmic ray muons. This

number turns out to be of the order of (0.2 ± 0.05%), and can therefore safely be

neglected.

5.1.2 Punch through

A possible irreducible background to genuine muons are pions that punch through the

calorimeter and the muon toroid, faking a muon. In Run I this effect was investigated,

and no punch through was observed for jets with Ejet
T < 200 GeV [57]. To investigate

this effect in the (for this particular effect unchanged) Run II detector, we select a

data sample of reconstructed muons and jets, with the muon in a cone of δR < 0.7 of

the jet axis. If the muon is caused by punch-through, we expect the number of hits in

the A-layer of the muon system around the muon to increase with increasing Ejet
T . As

can be seen in figure 5.3, no dependance of the number of A-layer hits is observed (a

similar plot can be made for the number of B- and C-layer hits), and the amount of

punch through can be ignored.



5.2 Jet Selection and Identification 95

 (GeV)jet
TE

20 30 40 50 60 70 80 90 100

A
N

0

1

2

3

4

5

6

7

8

9

10
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T . The size of the boxes represents the number of entries in each bin.

The points represent the averages in each Ejet
T bin, with the errors representing the

spread, which is defined as the RMS of the distribution in each vertical slice.

5.2 Jet Selection and Identification

The majority of the background to physics jets consists of hot cells, which fake an

energy deposit due to electronic noise. Even though these are partially removed at

the readout level and by a hot cell suppression algorithm, some still remain and are

reconstructed as fake jets. To suppress these jets, the following cuts are applied (see

figure 5.4):

• Hot Fraction < 10: the ratio in energy between the most energetic cell and the

next to most energetic cell has to be lower than 10. A higher ratio points to an

unbalanced jet in which the highest energy cell is probably a hot cell;

• 1 < n90 < 30: n90 is the number of calorimeter towers which contain 90% of the

jet energy. If this number is 1, this again points to an unbalanced jet consisting

of one tower. If it is greater than 30, the jet consists of a high number of towers

which each contain little energy. These are mainly jets consisting completely of

noisy cells;
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• Coarse Hadronic Fraction (CHF) < 0.4: The fraction of the total energy of the

jet in the outer (hadronic) layer of the calorimeter. A coarse hadronic fraction of

more than 0.4 is highly unlikely for genuine physics jets;

• Electromagnetic Fraction (EMF) between 0.05 and 0.95: electrons deposit more

than 95% of their energy in the electromagnetic calorimeter. The lower bound

indicates hot cells in the hadronic calorimeter.

In addition, the following criteria have to be met:

• |η| < 0.6, to avoid the effects of the jets pointing to the Inter Cryostat region,

where the jets are poorly measured due to the gap between the central and

forward calorimeters;

• ET > 20 GeV, to be well above the cut-off energy in the jet reconstruction, where

ET is the transverse energy of the jet, corrected by applying the Jet Energy Scale

correction.

The resulting ET , η and φ distributions of the reconstructed jets are displayed in fig-

ure 5.5. The ET distribution turns on at 14.4 GeV, which is caused by the cut-off in the

jet reconstruction algorithm, as well as the jet reconstruction efficiency which is only

fully efficient above 20 GeV. The η distribution is flat in the region of interest for this

analysis, and drops at higher η values due to the reduced calorimeter coverage in the

intercryostat region. The φ distribution shows an eight-fold structure, due to the re-

quirement of an associated muon with δR(jet, µ) < 0.7. Less muons are reconstructed

in the region 5π
4

< φ < 7π
4

, resulting in less associated jets in that region. Also, other

side jets in the region π
4

< φ < 3π
4

are suppressed by this effect.

5.2.1 Jet ID Efficiency

Not only do the jet ID cuts as explained in the previous section cut out the fake jets,

they also remove a number of good jets for which a correction needs to be applied.

The extent of this correction is calculated using di-jet events, in which one of the jets

passes the ID criteria, and furthermore:

• Both jets have |η| < 0.6 and ET > 20 GeV, to be in the same fiducial volume as

the jets in the data sample;

• The jets are back-to-back: ∆φ > 175◦, and E/T < 0.7Eleading jet
T , to ensure a

proper di-jet event;

• Etot < 2 TeV, to remove events with noisy calorimeter readout.
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The ID efficiency can be extracted from this sample using the following definition:

εID =
Number of other side jets passing ID cuts

T otal number of other side jets
(5.1)

This efficiency is shown as a function of jet ET , η and φ in figure 5.6, and averages

to (94.2 ± 0.1%). The ID efficiency as a function of jet ET shows a turn-on curve for

jets below 40 GeV. This turn-on curve is caused by the cut on the electromagnetic

fraction of the jet - low energy jets deposit a higher fraction of their energy in the first

(electromagnetic) layers of the calorimeter. This is demonstrated in figure 5.6 by the

small crosses, which represent the jet ID efficiency without the EMF cuts. Without

these cuts, the ID efficiency averages to (98.7 ± 0.1%).

An additional event topology that affects this efficiency measurement is back to

back γ+jet events, in which the jet passes the ID cuts listed above, and enters the

denominator of equation 5.1. The photon normally does not pass the ID cuts, which

lowers the measured ID efficiency. To measure the extent of this effect, we count the

number of such events in the Monte Carlo simulation compared to the number of di-jet

events. This ratio results in (0.05 ± 0.05)%, indicating that these event topologies do

not have a significant effect on the jet ID measurement.
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Figure 5.4: Properties of jets used to suppress fake jets, before (open histograms)

and after (solid grey histograms) ID cuts. The quantities on the horizontal axes are

explained in the text.
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cuts.
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T , η and φ. Black dots represent the

efficiency after all cuts, the crosses represent the efficiency without the EMF cuts.
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5.3 µ+jet cross section measurement

To conclude this chapter we will measure the differential cross section of µ+jet events

as a function of the calorimeter transverse jet energy, dσ/dEjetCal
T . This jet energy

is corrected for the Jet Energy Scale, and for the ionization energy that the muon

deposits on average in the calorimeter. This quantity is illustrated in figure 5.7. The

measurement of the differential µ+jet cross section is the first step towards the b-jet

cross section measurement.

Using the data sample described earlier in this chapter, the first measurement is

the number of events in each EjetCal
T bin, dN/dEjetCal

T . Both the muon and the jet in

each event have to pass the identification cuts as discussed in this chapter, as well as

the following kinematic cuts:

• EjetCal
T > 20 GeV;

• |ηjetCal| < 0.6;

• pµ
T > 6 GeV/c;

• |ηµ| < 0.8;

• δR(jetCal, µ) < 0.7.

This results in the distribution of dN/dEjetCal
T as shown in figure 5.8, where the hori-

zontal lines represent the bin sizes used which are chosen according to the jet energy

resolution.

To measure the differential cross section, each event needs to be scaled with the

detection efficiency for that event, and must be normalized to the total integrated

luminosity:
dσ

dEjetCal
T

=
1∫ Ldt

1

ε(µ, jetCal)

dN

dEjetCal
T

(5.2)

Here,
∫ Ldt is the total integrated luminosity and ε(µ, jetCal) is the combined efficiency

of all trigger, reconstruction and identification efficiencies for the muons and jets in that

EjetCal
T bin. This efficiency correction is the subject of the next section.

5.3.1 Efficiency corrections

The correction to the measured cross section for efficiencies is applied on a jet by jet

basis. For every jet with an associated muon, the dependance of the efficiency on

the η, φ or pT of the muon and jet is taken into account. We use the 1-dimensional

distributions under the assumptions that the efficiency factorizes. The effect of the

uncertainty on each efficiency is propagated to the full cross section by varying each

efficiency within the errors. Each source of uncertainty is briefly explained below.
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Level 1 calorimeter trigger

The µ+jet cross section is corrected for the Level 1 calorimeter trigger efficiency accord-

ing to the turn-on curve shown in figure 3.3. The effect of the statistical uncertainty

of the trigger efficiency on the cross section is shown by the open circles in figure 5.9.

The systematic uncertainty of the trigger efficiency is dominated by the uncertainty of

the Jet Energy Scale correction. This effect is not taken into account here, but will be

discussed below.

Level 1 muon trigger efficiency

The Level 1 muon trigger efficiency shows a dependance on both pµ
T and ηµ (see fig-

ure 3.5). Due to statistical limitations, it is not possible to perform a full 2-dimensional

calculation of the efficiency in (pT , η) bins. Therefore, we first calculate the efficiency

averaged over pT but taking into account the η dependance. Then, the efficiency is cal-

culated using an averaged η efficiency and taking into account the pT dependance. The

difference resulting from using these two different efficiencies is taken as an additional

systematic error on the Level 1 muon trigger efficiency. The effect of the resulting total

error on the cross section is shown by the black squares in figure 5.9.

Muon reconstruction efficiency

The muon reconstruction efficiency depends on pT , η, and to a lesser extent, on φ (see

figure 4.16). Since the physics is invariant under rotations in φ, we correct for the hole

in the bottom of the detector by an overall scale factor. The dependance on pT and η is

taken into account in a similar fashion as done for the Level 1 muon trigger efficiency.

The black circles in figure 5.9 show the systematic error on the cross section resulting

from the errors on the muon reconstruction efficiency.

Jet Energy Scale correction

We use the uncertainty on the Jet Energy Scale correction of typically 7%, as shown in

figure 4.3, to estimate the systematic effect on the µ+jet cross section. The calculation

of the µ+jet cross section is redone for a Jet Energy Scale correction obtained by

adding (subtracting) the uncertainty to the nominal values. The resulting effects are

illustrated in figure 5.9 by the open triangles. The strong dependance of the µ+jet

cross section on the energy scale of the jets leads to effects of 40% in the lowest ET

bin.

The total systematic error is represented by the black triangles in figure 5.9. The

resulting µ+jet cross section, measured as a function of the calorimeter transverse jet

energy, EjetCal
T , is shown by the black dots in figure 5.10, with statistical and systematic
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errors. The systematic errors dominate the total error. This differential cross section

is now the input to an unfolding procedure and to the measurement of the b-jet cross

section, as will be shown in the next chapter.

Total Systematic Error
Jet Energy Scale Error
Muon Reconstruction Error
Muon Trigger Error
Jet Trigger Error
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Figure 5.9: Systematic errors on the µ + jet differential cross section, resulting from

the sources listed in the text, as a function of transverse calorimeter jet energy. Since

the errors are asymmetric, both the high and the low errors are shown, which result

from floating the errors on each efficiency up and down, respectively.
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systematic errors.
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Chapter 6

B-jet cross section

In p̄p collisions, the b-jets are produced with a transverse momentum that follows a cer-

tain underlying distribution. In the experiment the goal is to measure this distribution.

However, it cannot be measured directly due to contamination from background events

and physics effects like the b → µ + ν decay, in which the neutrino carries energy away

from the jet. Detector resolution and acceptance effects also distort the distribution.

To measure the true distribution with which the b-jets are produced, we correct for

these effects in this chapter.

6.1 Measurement strategy

In chapter 5, we have measured the µ+jet cross section as a function of calorimeter jet

ET , corrected for the Jet Energy Scale, without the muon and neutrino energies but

with the energy deposit of the muon in the calorimeter subtracted (see section 5.1).

We call this jet energy EjetCal
T (see figure 5.7). We will use this cross section for

two purposes. The first is the calculation of the µ+jet cross section as a function of

the true particle level jet energy without the muon and neutrino energy, EjetP
T . This

distribution is convoluted with the calorimeter resolution and the kinematic acceptance

of the detector:

dσ(µ + jet)

dEjetCal
T

= RCal(EjetP
T ) ⊗ K(EjetP

T ) ⊗ dσ(µ + jet)

dEjetP
T

(6.1)

where RCal(EjetP
T ) represents the calorimeter smearing and K(EjetP

T ) is the kinematic

acceptance of the detector. Correcting for these effects is done by using an unfolding

procedure which corrects for the calorimeter resolution, in addition to a kinematic

acceptance correction.

The second use of this initial µ+jet cross section is to extract the b-jet cross section.

The measurement of the b-jet content is done using a variable called P Rel
T , which is the
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momentum of the muon relative to the combined µ+jet axis, and results in a fractional

b-jet content as a function of EjetCal
T : Z(EjetCal

T ). Applying this fractional b-jet content

to the measured µ+jet cross section (as function of EjetCal
T ) yields the b-jet cross section,

measured as a function of EjetCal
T , which we call B(EjetCal

T ):

B(EjetCal
T ) =

dσ(b → µ)

dEjetCal
T

(6.2)

This distribution B(EjetCal
T ) again forms the basis from which we extract two underlying

distributions.

The first distribution is the b-jet cross section as a function of the particle level

energy (EjetP
T ), without the energy of the muon and neutrino, and with the b-quark

decaying to a muon. We call this distribution G(EjetP
T ):

G(EjetP
T ) =

dσ(b → µ)

dEjetP
T

(6.3)

This distribution is convoluted with the kinematic acceptance of the detector K(EjetP
T )

and the resolution of the calorimeter RCal(EjetP
T ) to result in the measured b-jet cross

section:

B(EjetCal
T ) = RCal(EjetP

T ) ⊗ K(EjetP
T ) ⊗ G(EjetP

T ) (6.4)

To correct the measured b-jet cross section for the calorimeter resolution RCal(EjetP
T ),

we follow an unfolding procedure, which results in a correction function CR(EjetCal
T ).

We correct for the effects of the kinematic acceptance K(EjetP
T ) by a correction function

CK(EjetP
T ), which is extracted from the Monte Carlo simulation.

The second distribution is the differential b-jet cross section F (EjetPL
T ), with no

constraint on the decay of the b-quark and measured as a function of the total b-jet

energy, EjetPL
T :

F (EjetPL
T ) =

dσ

dEjetPL
T

(6.5)

This energy includes the muon and neutrino energy. In addition to the two corrections

described above to measure G(EjetP
T ), we now have to apply two extra corrections to

correct for the energy of the muon and the neutrino. First, we have the b → µ + ν

branching ratio, T (b → µ). This is an overall scale factor, independent of the jet energy.

Then, we have to correct for the energy of the muon and neutrino, which changes the

jet energy. Unlike all the previous effects, this effect, Lb→µ+ν(EjetP
T ), directly changes

the horizontal scale of the cross section. It also includes a resolution effect, due to the
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varying energy of the muon and neutrino. We can express the measured cross section

B(EjetCal
T ) in terms of these effects:

B(EjetCal
T ) = RCal(EjetP

T ) ⊗ Lb→µ+ν(EjetPL
T ) ⊗

K(EjetPL
T ) ⊗ T (b → µ) ⊗ F (EjetPL

T ) (6.6)

Thus, to measure F (EjetPL
T ) we have to apply corrections to B(EjetCal

T ) for these effects.

To correct for the b → µ + ν branching ratio, we use the function CT (b → µ), which is

exactly the inverse of T (b → µ). The kinematic acceptance is corrected for by a correc-

tion function CK(EjetPL
T ), which is extracted from the Monte Carlo simulation. For the

scale effect of the lepton correction, we calculate a correction function S(EjetCal
T ), which

scales the cross section to the appropriate energy scale, namely EjetPL
T . We combine

the remaining resolution effect of Lb→µ+ν(EjetP
T ) with the resolution effect RCal(EjetP

T )

of the calorimeter, and correct for both by the function CRL(EjetPL
T ). Due to the ad-

ditional smearing on the jet energy, coming from the uncertainty on the energy of the

muon and neutrino, the cross section measured as a function of EjetPL
T will require

bigger bin sizes than the ones used for the µ+jet and B(EjetP
T ) cross sections.

Summarizing, the following distributions will be measured in this chapter:

• The µ+jet cross section as a function of EjetP
T ;

• The b-jet fraction of the µ+jet cross section, as a function of EjetCal
T ;

• The b-jet cross section as a function of EjetP
T , with the b-quark decaying to a muon,

which can be compared to the theoretical prediction, if the latter is corrected for

the energy loss of the muon and the neutrino, and the b → µ + ν branching ratio;

• The b-jet cross section as a function of the total b-jet energy EjetPL
T , which can

be directly compared with the theoretical predictions.

6.2 Unfolding the µ+jet cross section

To extract the µ+jet cross section as a function of the true particle energy of the jet

from the cross section dσ

dE
jetCal
T

we have to remove the effect of the finite resolution with

which the calorimeter measures the jet energy. We start with an ansatz function for

the µ+jet cross section with 3 free parameters, of the form:

H(ET , α, β, γ) = αEβ
T

(
1 −

(
2√

s

)
ET

)γ

(6.7)

where ET is the true energy of the jet, α, β and γ are free parameters, and
√

s is the

center of mass energy. The shape of this function is based on Monte Carlo trials, and
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has also been used in the Run I analysis [56]. It is schematically displayed in figure 6.1a.

We fold each point on this distribution with a gaussian shape, with the width of the

gaussian corresponding to the jet energy resolution, as discussed in section 4.1. The

resulting ”smeared ansatz” distribution is a function of the parameters α, β and γ. In

a χ2 minimization procedure we vary α, β and γ such that the resulting distribution

describes the data, with the χ2 defined as:

χ2 =
i=6∑
i=1

(
∆i

εi

)2

(6.8)

where ∆i is the difference between the data and the smeared ansatz for data point i,

and εi is the error on data point i (see figure 6.1b). The errors on the parameters of the

jet energy resolution are analytically propagated to the resolution function using the

full covariance matrix (see appendix A), and the error on the unfolded cross section

resulting from this uncertainty is estimated by varying the resolution function within

the errors. Figure 6.2 shows the result of this unfolding procedure, where the solid

curve is the ansatz function, and the dotted curve the smeared ansatz function. The

parameters of the ansatz function are listed in table 6.1. The smeared ansatz function

shows good agreement with the data points. The fact that the ratio of the smeared

ansatz function (dashed curve) and the ansatz function itself (solid curve) is greater

than one over the entire EjetCal
T range can be understood by Gaussian smearing of each

bin in the ansatz function. Since the cross section drops rapidly with increasing EjetCal
T ,

more events migrate from low energy bins to higher energy bins than there are events

that migrate from higher energy bins to lower energy bins. Shown in figure 6.3 is the

ratio 1/CU(EjetCal
T ) between the smeared ansatz and the ansatz function itself, with

the dashed lines representing the errors resulting from varying the jet energy resolution

errors.

The measured cross section is now updated according to this ratio, according to:

dσ

dEjetP
T

= CU(EjetCal
T )

dσ

dEjetCal
T

(6.9)

The relative error on CU(EjetCal
T ) is added in quadrature to the previously calculated

systematic errors of the cross section.



6.3 Kinematic acceptance corrections 111
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Figure 6.1: Schematic view of the procedure used to unfold the µ+jet cross section.

Figure a shows the ansatz function H as function of EjetP
T , which is smeared according

to the jet resolution to get the distribution as function of EjetCal
T , which is then fitted

to the measured data points.

6.3 Kinematic acceptance corrections

We measure the cross section in the kinematic region with pµ
T > 6 GeV/c, |ηµ| < 0.8

and |ηjet| < 0.6. The reconstructed kinematic properties of the muons and jets are

smeared around their true values, which cause fluctuations of events in and out of the

kinematic region in which the cross section is measured. Therefore, the unfolded cross

section needs an additional correction for the effects of these cuts. We investigate this

effect using the QCD Monte Carlo simulation, in which we select particle jets with an

associated muon with δR < 0.7. Two distributions are extracted, both as function

of the transverse particle jet energy, EjetP
T . The first distribution is the number of

events in each EjetP
T bin that passes the kinematic acceptance cuts, using the Monte

Carlo true values of the jet and the muon. For the second distribution, we smear the

kinematic properties of the muons and jets, except for the jet energy, according to the

measured resolutions in the data, and count the number of events in each EjetP
T bin

that pass the kinematic acceptance cuts using the smeared kinematic properties of the

Parameter Value

α 3.06·104 ± 1.05 · 103

β -3.09 ± 1.60·10−2

γ 15.2 ± 8.24 ·10−2

Table 6.1: Final parameters used in the ansatz function to minimize the difference

between the smeared ansatz function and the measured data points.
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Figure 6.2: Comparison of the smeared ansatz function, represented by the dashed line,

with the data points. Also shown by the solid line is the underlying ansatz function

which generates the smeared ansatz function through the jet energy resolution.
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Figure 6.3: Ratio between the smeared ansatz and the ansatz function. The grey band

represents the error on this ratio.
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Figure 6.4: Kinematic acceptance correction to account for the effect of smearing the

kinematic properties of the muon and jet on the cross section.

jet and the muon. Dividing the first histogram by the second results in the correction

factor CK(EjetP
T ) that we have to apply to the measured cross section. This factor is

independent of EjetP
T and close to one (1.018±0.036), as can be seen in figure 6.4. This

is clearly a small effect, and does not have much relevance for the measurement of the

cross section.

Correcting the measured cross section for the unfolding and the kinematic accep-

tance results in the differential µ+jet cross section as a function of particle jet ET , or

EjetP
T , without the muon and neutrino energy, as is shown in figure 6.5. Also shown

is the Pythia prediction for µ+jet events. Note, that for the further calculation of the

b-jet cross section, we will not use this result, but rather the µ+jet cross section as

measured in chapter 5.

6.4 Extraction of the b-jet component

To extract the b-jet component Z(EjetCal
T ) from the µ+jet sample we use the properties

of the muon with respect to the jet to identify direct b → µ decays. Background

processes are c → µ decays, π/K → µ decays and τ → µ decays. The cross section for

W/Z → µ decays is so small compared to the b-jet cross section that these decays can

be neglected. A good discriminant between these production processes is the quantity
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Figure 6.5: Differential µ+jet cross section as function of particle jet ET , without

muon and neutrino corrections. The black curve represents the Pythia prediction for

this cross section.

P Rel
T , which is explained in detail below.

6.4.1 P Rel
T Tagging variable

The P Rel
T tagging variable is defined as the transverse momentum of the muon with

respect to the combined axis of the muon and jet (see figure 6.6). It is measured using

the jet direction and energy, and the muon direction and momentum. The variable is

based on the decay of the quark in the jet: in the rest system of the meson or hadron

that contains the b-quark, the muon gets a significant momentum due to the mass

difference of the b-quark and its decay products. This momentum is lower when a

c- or light quark decays, because the mass difference between those quarks and their

decay products is lower. If the whole system is boosted along the quark momentum

axis, the P Rel
T variable is a measure of the transverse boost of the muon with respect

to the quark momentum axis. The discriminating power of this variable is shown in

figure 6.7, which shows the P Rel
T of the muon from different decays on the Monte Carlo

true level. Already on this level, it can be seen that π/K → µ decays, c → µ decays

and b → c → µ decays are practically indistinguishable. The detector resolution of

the muon momentum and direction measurement and the jet energy and direction

measurement will make the difference between the distributions even less, resulting in
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�Pµ

�Pjet

P Rel
T

Figure 6.6: The definition of the P Rel
T variable. The muon direction and momentum

are indicated by �Pµ, the jet direction and energy by �Pjet. Adding these two vectors

results in the combined µ+jet axis, indicated by the dashed line. The P Rel
T of the muon

is now the transverse momentum of the muon with respect to this axis.

an inability to separate these decays.

Therefore, we divide the sample in two parts: b → µ and non-b → µ, where the

non-b → µ includes the cascade decay b → c → µ. The resulting P Rel
T distributions in

the two samples are used for the extraction of the b-jet content, and are referred to as

templates.

Figure 6.8 shows the P Rel
T distribution measured in the data, with the following

cuts:

• EjetCal
T > 20 GeV;

• |ηjetCal| < 0.6;

• pµ
T > 6 GeV/c;

• |ηµ| < 0.8;

• δR(jetCal, µ) < 0.7.

To measure the b-jet content of the data, we need templates that describe the shape of

the P Rel
T variable in background events and signal events. These templates are in part

extracted from the Monte Carlo simulation, as explained in detail in the next sections.

Smearing of Monte Carlo templates

As was shown in chapter 4, the resolution with which the Monte Carlo simulation

measures the kinematic properties of reconstructed muons and jets is underestimated
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Figure 6.7: P Rel
T templates at the Monte Carlo parton level. The templates are nor-

malized to one.

compared to the resolutions in data. To be able to use the P Rel
T shape that is extracted

from the Monte Carlo simulation to measure the b-jet content in the data, we have to

account for this deficiency, and apply smearing corrections to the kinematic properties

of the muons and jets we extract from the Monte Carlo events. For the jets, we only

need to smear the transverse energy since the η and φ directions are measured with

comparable resolution in the Monte Carlo simulation as in the data (see section 4.1).

The transverse energy of the jets is smeared according to the results of section 4.1. For

the reconstructed muons in the Monte Carlo simulation we smear the pT , η and φ of

the muons, as they were derived in section 4.2.5.

Extraction of the signal P Rel
T template

The shape of the P Rel
T distribution for b → µ decays is obtained with a Monte Carlo

sample of 0.5 million bb̄ events, with no initial constraints on the decay of the b-

quarks. From this sample, events are selected that contain a reconstructed jet and a

reconstructed muon, with a δR separation between the jet and the muon of less than
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Figure 6.8: Distribution of the P Rel
T variable in the data sample.

0.7. Also, the muon is matched with a muon from the Monte Carlo truth information

within a cone of δR < 0.3 and is required to be a direct decay product of the parent

b-quark. The kinematic properties of the muons and jets are then smeared as explained

previously, and the same cuts are applied as listed above, resulting in the P Rel
T template

illustrated by the open circles in figure 6.9.

The bb̄ events are generated in Pythia using the direct bb̄ production process, which

uses the leading order matrix elements for massive quarks, but which does not include

processes like flavor excitation and gluon splitting. Especially the latter might impact

the shape of the P Rel
T distribution, due to the possibility of two heavy quarks present

in the same jet. This effect is investigated by running the Pythia simulator in a

generic QCD mode that includes the flavor excitation and gluon splitting processes.

From the generated events the b-producing events are then extracted. We now look

at the difference in the resulting P Rel
T shape for the b → µ decays in both the direct

bb̄ production and the b → µ decays extracted from the QCD generation mode. We

split the templates in two Ejet
T ranges, Ejet

T < 35 GeV and Ejet
T > 35 GeV, to account

for the fact that high ET jets are more likely to contain two b-quarks (see figure 1.8).

The resulting templates are shown in figure 6.10. For both ET ranges, no significant
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Figure 6.9: P Rel
T templates extracted from reconstructed MC information. The black

circles show the P Rel
T distribution of the background template, the open circles show

the signal template. Both templates are normalized to one.

difference is visible between the P Rel
T templates from QCD and bb̄ production. Since we

have higher statistics in the sample extracted from direct bb̄ production, we use that

for further analysis1.

Extraction of the background P Rel
T template

The biggest difficulty in extracting the P Rel
T template for non-b → µ decays is the

contribution of π/K → µ decays. Pythia treats pions and kaons as stable at the

generation level, and they decay at the detector simulation step. To be able to get a

template for the background with reasonable statistics, we have simulated 2.5 million

QCD events, from which all non-b → µ decays have been extracted. If we apply the

same fiducial cuts as used in the data, the majority of the events is removed, resulting

in low statistics in the background template. Properly applying the jet and muon

1We choose not to combine the samples, due to the fact that one production process uses massive
quarks while the other does not, and one also has to take into consideration interferences between the
production diagrams.
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Figure 6.10: Comparison of P Rel
T templates for b → µ decays, extracted from direct bb̄

generation (black circles) and from QCD generation (open circles), for Ejet
T < 35 GeV

(a) and Ejet
T > 35 GeV (b).

resolutions results in the template as shown in figure 6.9 by the black circles, where

the templates are normalized to one.

To circumvent this problem of low statistics, the background template is also ex-

tracted directly from the data sample. This is done by selecting tracks reconstructed

in the central tracker, which satisfy the following requirements:

• The event is taken during a run which is qualified as good by the central tracking

groups;

• Tracks reconstructed using only the axial fibers of the CFT are removed, since

they do not contain any η information;

• The relative error on the measurement of the pT of the central track is less than

2.5%, to ensure properly reconstructed tracks;

• δR(jet, central track) < 0.7 to make sure the track is associated with the jet.

If we assume that all tracks are muons from pion decays, we can use them in the P Rel
T

template if we weigh them with p−1
T to account for the probability of a pion decaying

to a muon, and smear them according to the muon resolution. We do not have to

take into consideration the resolution of the central tracks, since the muon resolution

is measured with respect to these central tracks, and the resolution with which the

central tracks are measured is negligible with respect to the local muon resolution (see

section 4.2.5). In addition to higher statistics, this method has the added benefit that
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the properties of the jets in the events do not have to be smeared, since we are using

data events. The data used for the extraction of this template still contains a certain

amount of b-quarks. However, since we do not require the presence of a muon in the

events, this contribution is not significant. Figure 6.11 shows the resulting template

from central tracks, compared to the one using the muons from the QCD Monte Carlo

simulation.
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Figure 6.11: P Rel
T templates for light quark jets, extracted from the Monte Carlo simula-

tion (black circles) and from the data using central tracks (open circles). The templates

are normalized to one.

6.4.2 Kinematic dependance

Theoretically, the P Rel
T variable is a boost independent quantity. However, due to the

finite resolution of the detector, dependencies on pµ
T and EjetCal

T are introduced. Since

we are ultimately interested in the differential cross section as a function of EjetCal
T , we

integrate over pµ
T and investigate the dependance of the templates on EjetCal

T . This is

shown in figure 6.12 for the b → µ and non-b → µ templates, in the EjetCal
T bins:

a. 20 - 25 GeV

b. 25 - 35 GeV

c. 35 - 50 GeV

d. 50 - 100 GeV
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where the size of the bins is constrained by statistics, especially for the non-b → µ

template. The strategy is now to divide the data in the same bins of EjetCal
T and fit

the templates to the data to measure the contributions of signal and background in

the data, as a function of EjetCal
T .
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Figure 6.12: Dependance of the P Rel
T templates on Ejet

T , in the bins 20-25-35-50-100.

The open circles show the b → µ template, while the black dots show the non-b →
µ template. The errors on the data points are statistical only. The templates are

normalized to one.
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6.4.3 Template fit

In each of the EjetCal
T bins a fit is done of the P Rel

T templates to the data, according to:

(
dN

dP Rel
T

)data

i

= Cb→µ

(
dN

dP Rel
T

)b→µ

i

+ Cnon−b→µ

(
dN

dP Rel
T

)non−b→µ

i

(6.10)

where i loops over each EjetCal
T bin, and dN

dP Rel
T

represents the P Rel
T distribution in each

EjetCal
T bin. The factors C are the scaling factors with which the templates need to

be scaled to fit the data. The fit is done using the HMCMLL [58] program, which fits

the Monte Carlo templates to the data distribution using a maximum likelihood fit

that includes the effect of both the data and Monte Carlo statistics, and returns the

estimate of the fraction of each Monte Carlo template which represents the data best.

This procedure is followed using both the non-b → µ template from the QCD Monte

Carlo simulation as well as with the non-b → µ template extracted from the data, to

investigate systematic effects. Figure 6.13 shows the fit of the QCD template and the

bb̄ template to the data in all four bins, and the results are summarized in table 6.2.

Figure 6.14 shows the fit of the background template extracted from data, and the

bb̄ template to the data, and is summarized in table 6.3. Figure 6.15 illustrates these

numbers, together with a fit of the form:

Z(EjetCal
T ) = a +

b

EjetCal
T

(6.11)

The shape of this function is chosen after trials using the Monte Carlo simulation, and

was also used in the Run I analysis [56]. The dashed grey lines represent the error on

the fit. The resulting values for the parameters a and b are listed in table 6.4. For the

final b-jet content measurement, we take the fit that used the background template from

data, because of lower errors on the fit. The difference of that fit with the result of the

fit using the template from the QCD Monte Carlo simulation is added in quadrature to

the error from the fit to cover the uncertainty introduced by the method. This results

in the solid grey lines in figure 6.15.

A comment about error propagation has to be made here. The correlation matrix

that is provided by the fit to the four data points allows us to measure the deviation

∆Z(EjetCal
T ) at each point on the function Z(EjetCal

T ). However, it does not tell us

how these errors are correlated from each point on the function to an other point on

the function, due to changes in the parameters a and b of the fitted function. The

derivation of the correlation matrix for the points on the function uses a numerical

procedure, which is explained in detail in appendix B.

As a consistency check of the b-content measurement method, we perform a closure

test in which we simulate the data sample by taking all µ + jet events from the QCD
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Monte Carlo simulation. This sample then includes well known amounts of b → µ

decays and non-b → µ decays. Using the bb̄ template extracted from the bb̄ sample and

the non-b → µ template extracted from the data, we apply the same fit as described

above to measure the amount of b → µ decays in the sample. Integrated over the entire

EjetCal
T range, this results in a measured b-jet content of (26± 3)%, compared to a true

b-jet content in the sample of (28 ± 1)%.
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EjetCal
T range b-content background content

20 - 25 GeV 0.39 ± 0.064 0.61 ± 0.073

25 - 35 GeV 0.22 ± 0.066 0.78 ± 0.077

35 - 50 GeV 0.24 ± 0.055 0.76 ± 0.068

50 - 100 GeV 0.14 ± 0.08 0.86 ± 0.10

Table 6.2: The b-jet and background content in each bin of EjetCal
T , where the back-

ground template is extracted from the QCD Monte Carlo simulation.
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Figure 6.13: Fit of the background template, extracted from the QCD Monte Carlo

simulation, and the signal template, to the data in each of the four EjetCal
T bins.
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EjetCal
T range b-content background content

20 - 25 GeV 0.32 ± 0.041 0.68 ± 0.043

25 - 35 GeV 0.29 ± 0.028 0.71 ± 0.030

35 - 50 GeV 0.24 ± 0.031 0.76 ± 0.034

50 - 100 GeV 0.19 ± 0.043 0.81 ± 0.048

Table 6.3: The b-jet and background content in each bin of EjetCal
T , where the back-

ground template is extracted from the data using central tracks.
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Figure 6.14: Fit of the background template, extracted from the data using central

tracks, and the signal template, to the data in each of the four EjetCal
T bins.
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Figure 6.15: Measured b-jet content as function of EjetCal
T , using the background tem-

plate extracted from the QCD Monte Carlo simulation (open circles), and the template

extracted from the data (black circles)). For clarity, the black circles are offset hori-

zontally by -1 GeV, while the open circles are offset +1 GeV. The errors from the fit

are represented by the grey dotted lines. The solid grey line includes the systematic

error from the method.

a b ρab

Background template, QCD 0.135 ± 6.4·10−2 125 ± 58.3 -0.818

Background template, central tracks 0.198 ± 3.7·10−2 68.8 ± 33.8 -0.841

Table 6.4: Parameters resulting from the fit to the b-content using both background

templates from the QCD Monte Carlo simulation and from the central tracks in the

data. The correlation between the fit parameters a and b is given by ρab.
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6.5 Bb→µ-jet cross section measurement

Using the b-jet content measured above, we can now extract the b-jet cross section,

with b → µ, from the measured µ+jet spectrum (corrected for all efficiencies) shown

in figure 5.10, according to:

B(EjetCal
T ) =

dσ(b → µ)

dEjetCal
T

= Z(EjetCal
T )

dσ(µ + jet)

dEjetCal
T

(6.12)

This correction is done on a bin-by-bin basis, where every bin is weighted with the b-jet

content that corresponds to its ET . The errors on the fit parameters of equation 6.11

are taken into account by propagating the full covariance matrix (further explained in

appendix A). This results in the b-jet cross section as a function of EjetCal
T , with the

b-quark decaying to a muon, as is shown in figure 6.16. The next step will be to correct

for the detector effects on the measurement of this cross section.
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Figure 6.16: The b-jet cross section, with b → µ, as a function of calorimeter EjetCal
T .

The errors on the data points include both systematic and statistical errors.
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6.5.1 Unfolding the b-jet cross section

We now proceed to unfold this b-jet cross section, measured as function of EjetCal
T

according to equation 6.12, for the effect of the finite resolution of the calorimeter

RCal(EjetP
T ) and the kinematic acceptance of the detector K(EjetP

T ). This does not

take into account the energy carried away from the jet by the muon and neutrino

which are present in the jet. Hence the distribution we extract in this section is the

b-jet cross section as function of the particle jet energy EjetP
T , with b → µ.

To unfold the b-jet cross section we follow a similar procedure as outlined in sec-

tion 6.2. Again, we start with an ansatz function I(EjetP
T ) with three free parameters,

according to:

I(EjetP
T , α, β, γ) = α

(
EjetP

T

)β
(

1 −
(

2√
s

)
EjetP

T

)γ

(6.13)

with α, β and γ the free parameters. I(EjetP
T ) represents the function G(EjetP

T ), con-

voluted with the kinematic acceptance K(EjetP
T ): I(EjetP

T ) = K(EjetP
T ) ⊗ G(EjetP

T ).

We smear this distribution with the jet energy resolution RCal(EjetP
T ), and fit to the

b-jet cross section measured in the previous section, as shown in figure 6.16. Upon

convergence of the fit, resulting in the parameters α, β and γ, as listed in table 6.5,

we use the ratio CR(EjetCal
T ) of the ansatz function to the smeared ansatz function to

update the data points, where CR(EjetCal
T ) is defined as:

1

CR(EjetCal
T )

=
RCal(EjetP

T ) ⊗ I(EjetP
T )

I(EjetP
T )

(6.14)

This ratio is shown in figure 6.17. This ratio is higher than the one used for unfolding

the µ+jet cross section, as shown in figure 6.3, which is due to the fact that the b-jet

cross section is falling steeper than the µ+jet cross section. We now have to make

the kinematic acceptance correction as explained in section 6.3. Even though we have

to make the kinematic acceptance corrections for b-jets, and not generic µ+jets, the

underlying distributions are the same, and we use the same factor CK(EjetP
T ) as shown

in figure 6.4.

The b-jet cross section, measured as a function of EjetP
T can then be defined as:

dσ(b → µ)

dEjetP
T

= CK(EjetP
T )CR(EjetCal

T )
dσ(b → µ)

dEjetCal
T

(6.15)

which uses equation 6.12. The b-jet cross section thus defined, still with b → µ, is

shown in figure 6.18 as a function of EjetP
T .
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Parameter Value

α 1.00·105 ± 16.9

β -3.55 ± 3.18·10−2

γ 25.2 ± 0.807

Table 6.5: Final parameters used in the ansatz function to minimize the difference

between the smeared ansatz function and the measured data points.
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Figure 6.17: Ratio 1/CR(EjetCal
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The dashed lines represent the errors on this ratio.
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EjetP
T , without muon and neutrino energies.
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6.6 Measurement of the b-jet cross section

To measure the b-jet cross section as a function of the full b-jet energy EjetPL
T , including

the muon and neutrino energies and the b → µ + ν branching ratio, we start out again

from the b-jet cross section measured as function of EjetCal
T (see figure 6.16). We again

have to take into account the kinematic acceptance correction and the resolution of the

calorimeter, as we did in the previous section. In addition, we now also have to deal

with two other effects, resulting from the addition of the muon and neutrino energies to

the jet energy. The first effect is a change of the energy scale, for which we correct with

a scale factor S(EjetP
T ), which changes the scale of the cross section from the measured

jet ET , EjetCal
T to the full b-jet ET , EjetPL

T . The second effect is a resolution effect,

caused by the varying energy carried away by the muon and neutrino. We correct

for this effect by an unfolding procedure similar to the one explained in the previous

section. This time, however, we correct for both the effect of the calorimeters resolution

and the resolution of the lepton correction simultaneously. After this correction, we

will correct for the b → µ + ν branching ratio and the kinematic acceptance of the

detector.

First we will derive the scale factor S(EjetP
T ). For this we use the Monte Carlo

simulation, by generating QCD events and extracting the bb̄ events, with at least one

b-quark decaying to a muon, and with both the jet and the muon in the correct fiducial

volume. We require the δR between the jet and the muon to be less than 0.7. We then

plot:

CL(EjetPL
T ) =

EjetPL
T

EjetP
T

(6.16)

as a function of the total b-jet energy EjetPL
T , where:

EjetPL
T = EjetP

T + Eµ
T + Eν

T (6.17)

This results in the scatter plot shown in figure 6.19. The spread in each vertical slice

of this scatter plot can be interpreted as a resolution effect on the jet energy, caused by

the uncertainty on the energy carried away by the muon and the neutrino. To extract

the scale factor S(EjetCal
T ) we make vertical slices of this scatter plot in each bin of

EjetPL
T . An example of one slice, for EjetPL

T = 40 GeV, is shown in figure 6.20. For

each distribution in each slice we take the position of the maximum as the scale factor

needed for that bin of EjetPL
T . This scale factor then transforms each value of EjetPL

T in a

corresponding value of EjetP
T , and can thus be used to scale EjetP

T into EjetPL
T . However,

since our starting point for the measurement of the b-jet cross section is a measurement

in terms of EjetCal
T we need to determine the scale factor as a function of EjetCal

T rather

than EjetP
T . As such, we have to consider the smearing effects of the calorimeter on

S(EjetCal
T ). If we have a distribution of EjetP

T , with a well defined maximum, smearing
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Figure 6.19: Lepton correction factor CjetPL
L as a function of the total b-jet transverse

energy EjetPL
T .

this distribution with a gaussian shape (due to the calorimeter resolution) will not

change the location of the maximum. Hence, for S(EjetCal
T ) we can use the same scale

factor that scales EjetP
T into EjetPL

T . We now fit a straight line through the values of

the maxima, as a function of EjetP
T , and define that as the scale factor S(EjetCal

T ).

This scale factor allows us to transform a distribution, measured as a function of

EjetCal
T , into a distribution of EjetPL

T . When applying this scale factor to the data we

obtain the data points as given in figure 6.22. This distribution corresponds to:

S(EjetCal
T ) ⊗ dσ(b → µ)

dEjetCal
T

(6.18)

Having incorporated the muon and neutrino energy scale, the effects of the resolution

need to be accounted for. This is done using an ansatz function, which will be corrected

for the effects of the energy carried away by the leptons and the calorimeter resolution

simultaneously. For this ansatz function, called J(EjetPL
T ), we assume a shape according

to:

J(EjetPL
T , α, β, γ) = α

(
EjetPL

T

)β
(

1 −
(

2√
s

)
EjetPL

T

)γ

(6.19)

which is illustrated in figure 6.21a. This function J(EjetPL
T ) is defined as (see equa-

tion 6.6):

J(EjetPL
T , α, β, γ) = K(EjetPL

T ) ⊗ T (b → µ) ⊗ F (EjetPL
T ) (6.20)
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Figure 6.20: A vertical slice at EjetPL
T = 40 GeV of the scatter plot in figure 6.19. The

black line is a fit to the histogram using a Landau function.

To correct for the variation of the energy of the muon and neutrino, we again use the

scatter plot of figure 6.19. The jet energy is scaled following a fit to the distribution

for CL(EjetPL
T ) for each slice in EjetPL

T . That is, each jet energy EjetPL
T is scaled and

distributed according to the fit for that particular EjetPL
T slice, with the area under this

fit normalized to one. This procedure then yields the distribution shown in figure 6.21b.

The next step is to take into account the resolution of the calorimeter. We smear

the distribution with the jet resolution, as described in section 6.2. This results in the

distribution of figure 6.21c, which is now a function of the transverse calorimeter jet

energy, EjetCal
T . This distribution corresponds to the measured data points that are

displayed in figure 6.16.

Finally, we have to use the scaling function S(EjetCal
T ) to scale this distribution,

resulting in a smeared ansatz function. This function is fit to the data points by

changing the parameters in the original ansatz function, and minimizing the χ2 as

defined in equation 6.8.

Upon convergence of the fit, the resulting ansatz function now represents the true

b-jet cross section as a function of lepton corrected transverse energy. Figure 6.22

shows the result of the fit, where the dotted curve is the smeared ansatz function. The

data points are the same as the points in figure 6.16, scaled with the scaling factor

S(EjetCal
T ), taking into account the changing bin sizes. The smeared ansatz function

fits the data points well (χ2 = 0.11). Figure 6.23 shows the ratio of the smeared ansatz
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Figure 6.21: Schematic illustration of the lepton correction and unfolding procedure.

and ansatz function. The dotted curves represent the error on the ratio, resulting from

varying the measured jet resolution, taking into account the full covariance matrix.

The scaled data points are now divided by the ratio shown in figure 6.23 to arrive

at the b-jet cross section as a function of total jet ET , according to:

dσ(b → µ)

dEjetPL
T

= CRL(EjetPL
T )

(
S(EjetCal

T ) ⊗ dσ(b → µ)

dEjetCal
T

)
(6.21)

What remains is to correct for the b → µ branching ratio T (b → µ) and the kinematic

acceptance K(EjetPL
T ) to get the final differential b-jet cross section.

A final comment has to be made with regards to this algorithm. Up to some

extent, the scaling function S(EjetCal
T ) can be chosen arbitrarily. This can be seen by

the following: at one point in the algorithm, both the data and the smeared model are

measured as a function of EjetCal
T . One could possibly perform the fit of the smeared
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Parameter Value

α 2.28·106 ± 1.52·106

β -4.34 ± 0.148

γ 5.06 ± 2.49

Table 6.6: Final parameters used in the ansatz function J(α, β, γ) to minimize the fit

of the smeared ansatz function to the measured data points.

 (GeV)
PLjet

T
E

20 40 60 80 100 120 140

 
(n

b
/G

e
V

)
P

L
je

t

T
/d

E
σ

d

10
-4

10
-3

10
-2

10
-1

1

Figure 6.22: Result of fit to scaled data points. The data points are the same as the

points in figure 6.16, scaled with the scaling factor S(EjetCal
T ), taking into account the

changing bin sizes. The dotted curve represents the smeared ansatz function.

model to the data points at this stage, and the resulting ansatz function would represent

the underlying theoretical distribution with which the b-jets are produced. However,

for the final measurement we do not want to measure the parameters α, β and γ, which

define the theoretical curve, but we want to measure the specific data points. Therefore

we scale both the data and the model to the new energy scale EjetPL
T , and fit the model

to the data points at that scale. Regardless of what we take for the scale factor, the

parameters α, β and γ will remain the same. What does change with a changing scale

is the unfolding correction CRL(EjetP
T ); if we use a another scale than currently used

in the algorithm, the smeared ansatz function will be different and consequently the

ratio will change. In fact, only the combination of the correction factors CRL(EjetP
T )
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EjetPL
T bin 〈EjetPL

T 〉 dσ/dEjetPL
T

29 – 43 34.1 4.03+2.70
−1.38 · 10−1

43 – 57 48.5 8.20+2.57
−1.91 · 10−2

57 – 70 62.2 2.56+0.71
−0.64 · 10−2

70 – 83 75.6 1.16+0.36
−0.36 · 10−2

83 – 107 93.5 4.47+1.66
−1.57 · 10−3

107 – 131 117 1.65+0.66
−0.71 · 10−3

Table 6.7: Values of the data points shown in figure 6.22.
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Figure 6.23: The ratio between the smeared ansatz function and the ansatz function.

The dotted lines represent the errors on the ratio that are coming from the uncertainty

on the jet energy resolution function.

and S(EjetCal
T ) has physical relevance. In the algorithm, the scale factor S(EjetCal

T ) is

chosen such that it maximizes the purity of the algorithm, which is further explained

below.

6.6.1 Purity considerations

The procedure discussed above can only be used if sufficient events in a certain mea-

sured EjetCal
T region, i.e. bin, originate from that particular region. If too many events
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migrate into that bin from other bins, the number of events in the bin does not rep-

resent the cross section in the corresponding EjetCal
T region. Therefore, we define the

purity in a particular bin as the number of events in that bin of EjetPL
T in the ansatz

function, divided by the number of events in that same bin in the smeared ansatz

function. We also define the efficiency in that bin as the percentage of the events that

does not smear out of the bin during the smearing procedure. For the six data points

used in the procedure above, the purities and efficiencies are listed in table 6.8. Clearly

the purities are on the low side to justify the bin sizes used. We therefore choose to

decrease the number of bins and increase their size such that the purity is at least

50% in each bin. Table 6.9 lists the efficiencies and purities for three bins, which are

appropriate for a correct unfolding procedure.

EjetCal
T bin (GeV) EjetPL

T bin (GeV) Purity (%) Efficiency (%)

20-30 29-43 42 42

30-40 43-57 36 38

40-50 57-70 30 31

50-60 70-83 27 31

60-80 83-107 37 42

80-100 107-131 29 37

Table 6.8: Purities and efficiencies for 6 bins in the data.

EjetCal
T bin (GeV) EjetPL

T bin (GeV) Purity (%) Efficiency (%)

20-38 29-54 54 52

38-60 54-83 50 53

60-100 83-131 51 59

Table 6.9: Purities and efficiencies for 3 bins in the data.

6.6.2 Kinematic acceptance and branching ratio

Ultimately, we want to measure the differential b-jet cross section in the range |ηjet| <

0.6. Up to now, we have required a muon with pµ
T > 6 GeV/c, and we need to correct

for this. We also have to apply a small correction due to smearing of reconstructed jets

and muons in and out of the fiducial region. Both these corrections are again extracted

from the Monte Carlo simulation, where we extract two distributions:
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1. The distribution of generated b-jets, without any constraints on the decay of the

b-quark in the jet. The jet is required to be within |ηjet| < 0.6.

2. The distribution of generated b-jets, with the b-quark decaying to a muon. After

smearing the jet η according to the detector resolution, we require that |ηjet| <

0.6. Also, after smearing the properties of the muon, it is required to have pµ
T > 6

GeV/c, and |ηµ| < 0.8.

Both distributions are made as a function of EjetPL
T . The ratio between distributions

1 and distribution 2 can now be used to scale the measured b-jet cross section in the

data. This ratio is shown in figure 6.24. Scaling the measured b-jet cross section with

this ratio according to:

dσ

dEjetPL
T

= CK(EjetPL
T )CT (b → µ)

(
dσ(b → µ)

dEjetPL
T

)
(6.22)

where dσ(b→µ)

dE
jetPL
T

is the cross section calculated in equation 6.21. This results in the

differential b-jet cross section as shown in figure 6.25. This b-jet cross section can now

be compared directly with theoretical predictions, as will be done in the next chapter.
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Figure 6.24: Ratio between the number of generated b-jets and b-jets that decay to a

muon with pµ
T > 6 GeV/c, in the fiducial volume defined by |ηjet| < 0.6.
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Figure 6.25: Differential b-jet cross section as function of total b-jet ET , corrected for

all detector and tagging effects.

EjetPL
T bin 〈EjetPL

T 〉 dσ/dEjetPL
T

29 – 54 35.9 5.44+2.68
−2.44

54 – 83 64.1 2.82+0.89
−0.84 · 10−1

83 –131 99.6 3.51+1.41
−1.35 · 10−2

Table 6.10: Values of the data points shown in figure 6.25.

6.7 Conclusions

In this chapter we have measured the four distributions mentioned in the first section,

namely the µ+jet cross section as function of the jet energy without muon and neutrino

energies, the b-jet content as a function of EjetCal
T , the b-jet cross section, with b → µ,

as function of the jet energy without muon and neutrino energies and the b-jet cross

section as function of the total b-jet transverse energy. The latter cross section has

the complication that the bin sizes needed to be increased to retain a proper purity

in the unfolding procedure. The two b-jet cross sections can now be compared to the

theoretical predictions as outlined in Chapter 1, as will be done in the next chapter.
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Chapter 7

Theory comparison

The measured differential b-jet cross section, corrected for all detector effects and

branching ratios can now be directly compared with theoretical predictions. For this

comparison we use the next-to-leading order Standard Model calculation written by

Mangano, Nason and Ridolfi (MNR), as described in section 1.2, as well as the Pythia

Monte Carlo simulation. We will compare two b-jet cross sections with the theoretical

predictions: the first is the b-jet cross section measured as a function of total b-jet

energy EjetPL
T . This measurement is done in three EjetPL

T bins to properly account for

resolution effects of the jets and the uncertainty on the energy carried away by the

leptons. The second is the b-jet cross section as a function of EjetP
T (that is, without

the lepton correction), with the b-quark decaying to a muon.

7.1 Comparison of data and theory

As has been explained in section 1.2, we compare the calculation of the next to leading

order production rate of b-jets, and not that of b-quarks, with data, to minimize the

sensitivity to the effects of fragmentation. We can directly compare the output of the

MNR calculation with the measured data points shown in figure 6.25. The fact that

some particles of the b-jet are produced out of the cone is accounted for by the particle

imbalance correction, described in section 4.1.

Figure 7.1 shows the result of the theory calculation, compared with the data points.

The error bands on the theory prediction reflect the uncertainty due to the fragmenta-

tion and factorization scales, and the mass of the b-quark. The ratio between the data

and the theory ranges from 1.7 for the first point to 2.2 for the highest energy data

point.
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Figure 7.1: Comparison of the data to the theory. The solid line shows the result of

the theoretical calculation, with the dotted lines showing the error on this calculation

coming from varying the b-quark mass and the factorization and renormalization scales.

The black points represent the measured data.

7.1.1 χ2 comparison of data and theory

We now proceed to quantify the comparison between the data and theory by means of

a χ2 comparison. The various sources of the errors on the data points are listed below.

Fully correlated uncertainties:

• Integrated luminosity;

• Level 1 muon trigger efficiency;

• Muon reconstruction efficiency;

• Jet Energy Scale;

• Jet energy resolution unfolding and lepton correction.
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Partially correlated uncertainties:

• B-content measurement. This is a fitted function of two parameters, which re-

sults in a partial correlation between the three data points. It also includes the

systematic error resulting from the use of different background templates.

• Level 1 jet trigger efficiency. This trigger becomes fully efficient above 40 GeV,

and only contributes to the error below 40 GeV;

• Jet identification efficiency. This efficiency reaches 100% above 40 GeV, and only

contributes to the error below that energy.

Fully uncorrelated uncertainties:

• Statistical errors.

The cross section values and uncertainties are listed in table 7.1. We calculate the

χ2 by:

χ2 = DT V −1D (7.1)

where D is the vector of differences between the data points and the theory, and V

is the covariance matrix of the points. To calculate this covariance matrix that takes

into account all sources of errors as they are listed above, we add all the covariance

matrices that we derive from each error separately, as listed in table 7.2, which also

shows the final covariance matrix. For the fully uncorrelated uncertainty, namely the

statistical error, the error matrix is a simple diagonal matrix, with the square of the

statistical error on the diagonal and all off-diagonal elements set to zero. For the fully

and partially correlated uncertainties, except for the b-content uncertainty, we use

the following procedure. We first calculate the nominal b-jet cross section, using the

nominal value of each error source listed above. Then, for each error source separately

we vary the error, and calculate the b-jet cross section with the new value of the error

source. The difference of this new b-jet cross section with the nominal b-jet cross section

EjetPL
T

dσ

dE
jetPL
T

Statistical Fully corr. Part. corr.

(GeV) (nb/GeV) uncertainty (%) uncertainty (%) uncertainty (%)

35.9 5.44 1.5 45.5 16.7

64.1 0.28 2.3 22.6 22.3

99.6 0.035 4.2 24.2 31.8

Table 7.1: Cross section values and uncertainties.
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Error source V00 V01 V02 V11 V12 V22

Lumi. 4.98·10−1 2.51·10−2 3.10·10−3 1.27·10−3 1.57·10−4 1.93·10−5

Muon Trig. 2.51·10−1 1.27·10−2 1.54·10−3 6.43·10−4 7.82·10−5 9.51·10−6

Muon Reco. 1.38·10−1 6.99·10−3 8.55·10−4 3.53·10−4 4.32·10−5 5.29·10−6

JES 5.23 9.09·10−2 1.32·10−2 1.58·10−3 2.27·10−4 3.26·10−5

Unfolding 2.21·10−1 3.95·10−3 1.12·10−3 7.06·10−5 3.77·10−5 4.80·10−6

B-jet cont. 6.59·10−1 8.88·10−3 9.83·10−4 3.76·10−3 8.66·10−5 1.24·10−4

Jet Trig. 1.83·10−2 4.56·10−4 0 1.14·10−5 0 0

Jet ID 1.51·10−1 6.00·10−3 0 2.39·10−4 0 0

Stat 6.57·10−3 0 0 3.99·10−5 0 2.14·10−6

Total 7.17 1.55·10−1 2.07·10−2 7.96·10−3 6.29·10−4 1.98·10−4

Table 7.2: Contributions to the covariance matrix from different error sources.

for each point can then be taken as the error on that point, resulting from that error

source. For the b-content correlation matrix we have to follow a more complicated

algorithm using an iterative procedure, which is explained in detail in appendix B.

7.2 Covariance matrix and result

Inverting the covariance matrix shown in table 7.2 results in the following matrix:

V −1 =




0.272 −4.069 −15.49

−4.069 228.7 −303.0

−15.49 −303.0 7647




Applying this matrix to the central value and uncertainty bands shown in figure 7.1,

using equation 7.1, yields the χ2 values. In table 7.3 we quote χ2/ndf, which is the

χ2 per degree of freedom. The number of degrees of freedom is actually equal to the

number of data points, since we do not fit a function with free parameters to the data

points. The confidence level represents the probability that a random repeat of this

experiment results in a larger χ2 [59]. However, this χ2 is blind to the distribution

of the points around the theoretical prediction, and assumes a random distribution of

points above and below the theoretical curve. In the case under consideration, all data

points lie above the theoretical curve. To quote a confidence level for a set of points

that are all on one side of the curve, we use a simple Monte Carlo model. In this model,

we do a large number of experiments in which we generate simulated data points based

on the theoretical curve and the errors on the data points, taking into account all
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χ2/ndf Confidence level (%) Confidence level

(one side) (%)

Upper prediction 0.61 60.6 33.5

Central prediction 1.31 26.9 15.0

Lower prediction 1.94 12.1 6.80

Table 7.3: Results of the χ2 per degree of freedom comparison between the measured

data points and the theoretical calculation, for the b-jet cross section as function of

EjetPL
T . The confidence levels quoted in the last column are calculated for a collection

of data points that are all on one side of the theoretical curve.

correlations between the data points. For each such experiment, we calculate the χ2

and compare it to the original χ2 of the comparison of the data to the theory. The

relative number of experiments that have a larger χ2 than the χ2 of the data is equal

to the confidence level quoted above. To now measure the confidence level for the

situation in which all data points are on one side of the theoretical curve, we count the

relative number of experiments that have a larger χ2 than the χ2 of the data, and have

all generated points on one side (above or below) of the theoretical curve. This then

gives the confidence level that the data points, as currently measured, are compatible

with the theory.

Clearly, the data points favor the upper band of the theory, but they do not disagree

with the central prediction of the theory. The shape of the theoretical prediction

resembles the shape of the data, though it seems that the data becomes higher than

the theory at higher values of EjetP
T .

We can also compare the data results with the prediction of Pythia [60]. For

this, we run Pythia in the mode that takes into account the next-to-leading order b-

producing processes, and extract the b-jet cross section. This results in figure 7.2. The

χ2 comparison between the data and Pythia, using the same covariance matrix, results

in χ2/ndf = 0.56 corresponding to a confidence level of 64.1%, or for a collection of

data points all on one side of the theoretical curve, a confidence level of 35.3%.

7.3 Further investigation of experimental errors

Given the fact that all three data points are higher than the theoretical prediction, the

question arises if one of the fully correlated errors can be the source of this systematic

shift. The fully correlated error with the biggest effect on the measurement is the Jet

Energy Scale. The error on this scale is approximately 7%, and it shifts the data points

along the horizontal axis in a fully correlated fashion. It is interesting to investigate
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Figure 7.2: Comparison of the data to the cross section as predicted by the Pythia

Monte Carlo simulation.

by how much we have to change the nominal Jet Energy Scale to shift the data points

so that they lie around the central prediction of the theory, as shown by the solid line

in figure 7.1. For this we fit the data points to the central prediction of the theory by

changing the horizontal position of the data points in a coherent fashion. This results

in a shift of 14.3%, or 2.0σ for an error on the Jet Energy Scale of 7%. Therefore, even

a relatively small change on the Jet Energy Scale can cause the data points to all lie

on one side of the theoretical distribution.

7.4 Comparison to the uncorrected b-jet cross sec-

tion

A large experimental uncertainty has been introduced by the correction of the energy

for the muon and neutrino in the jet. Since we have also measured the b-jet cross section

as a function of EjetP
T , with the b-quark decaying to a muon, we can compare this to

the theoretical prediction. The black points in figure 7.3 show this b-jet cross section.

The curves show the prediction as calculated by the MNR program, modified for the
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energy carried away by the muon and neutrino, and for the b → µ + ν branching ratio.

To obtain this modified MNR prediction, we weigh each Pythia event, in which the

b-quark decays to a muon and we have subtracted the muon and neutrino energy from

the jet energy, by the ratio of the original MNR prediction and the Pythia prediction of

the full b-jet cross section. We then fill a histogram using the particle jet EjetP
T with its

corresponding weight. The resulting distribution then corresponds to the MNR cross

section without the muon and neutrino contribution. The dotted lines correspond to

the theoretical error on the theoretical prediction, which are derived according to the

same method.

For this comparison, we derive the covariance matrix (as shown below) and calculate

the χ2 as we have done above. This results in the χ2 values as shown in table 7.4. Again,

the measurement favors the upper band of the theory.

χ2/ndf Confidence level (%) Confidence level

(one side) (%)

Upper prediction 0.80 57.2 21.5

Central prediction 1.28 26.2 10.6

Lower prediction 1.68 11.9 5.27

Table 7.4: Results of χ2 comparison between the measured data points and the theo-

retical calculation, for the b-jet cross section as function of EjetP
T . The confidence levels

quoted in the last column are calculated for a collection of data points that are all on

one side of the theoretical curve.

V −1 =




80.78 −4.046 · 102 −79.67 −16.84 −3.295 · 102 −9.066 · 102

−4.046 · 102 3.797 · 103 −2.916 · 103 −2.311 · 103 −6.529 · 103 −1.382 · 104

−79.67 −2.916 · 103 2.851 · 104 −9.942 · 103 −1.552 · 104 −4.089 · 104

−16.84 −2.311 · 103 −9.942 · 103 9.527 · 104 −2.818 · 104 −7.659 · 104

−3.295 · 102 −6.529 · 103 −1.552 · 104 −2.818 · 104 4.907 · 106 −1.389 · 106

−9.066 · 102 −1.382 · 104 −4.089 · 104 −7.659 · 104 −1.389 · 106 3.688 · 106
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Figure 7.3: Comparison of the data to the b-jet cross section with the b-quark decaying

to a muon, as predicted by MNR and scaled by Pythia. The data points are the same

as shown in figure 6.18
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7.5 Comparison to Run I results

The measurement presented in this analysis, which uses one of the first samples taken

with the DØ detector during the start of Run II, shows the b-jet cross section to be

higher than the theoretical calculations. This confirms earlier measurements where the

data points prefer the upper band of the theory. DØ measured the b-jet cross section

in Run I, which is shown in figure 7.5 [61]. The analysis used to derive this result is

similar to the one described in this thesis1, except that it used a different method to

handle the lepton corrections, which ignored the purities in the different bins. This

resulted in more data points, but which are not uncorrelated. CDF made a comparison

between the data and the theory in Run I, using B-mesons [62], where the b-mesons are

reconstructed using the B± → J/ψK± and B0 → J/ψK∗0(892) decay channels. This

results in figure 7.5. This analysis is different from the one presented in this analysis,

but does show a similar trend in which the data is measured higher than the theoretical

prediction.

7.6 Conclusions

In this analysis the measurement of the differential b-jet cross section has been presented

and compared with theoretical predictions. First, the total b-jet cross section, fully

corrected for all detector effects and lepton contributions is compared to the next-

to-leading order calculation by Mangano, Nason and Ridolfi. The comparison to the

central value of this prediction results in χ2/ndf = 1.31, with a confidence level of

15.0%. This means that the data is not incompatible with the theoretical prediction.

The upper error band of the theory gives a better fit to the data points, with a χ2

of 0.61 and a confidence level of 33.5%. This confirms earlier measurements done by

DØ and CDF during Run I, which also showed the data to prefer the upper error band

of the theory.

1Note, that the Run I measurement has been measured with |ηjet| < 1. Also, due to a different
implementation of counting b-jets, the Run I measurement is a factor 2 lower than the cross section
measured in this analysis.
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Figure 7.4: Run II measurement of the b-jet cross section, as derived in this analysis.

DO Run I CDF Run I

B meson

Figure 7.5: The left plot shows the b-jet cross section measured by DØ in Run I, with

the data represented by the black dots, and the theory represented by the solid line.

The dotted lines represent the errors on the the theoretical calculation. The right

plot shows the average B meson differential cross section measured by CDF in Run I,

compared to the theoretical calculation with errors.
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7.7 Outlook

The data sample used in this analysis has been taken during the early days of a suc-

cessfully operating DØ detector. Currently, both the accelerator and the detector have

been much improved. The peak luminosity delivered by the accelerator has been in-

creased to 4.0·1031 cm−2s−1, allowing the total data sample taken by DØ to increase

to 120 pb−1. The DØ detector itself has improved its trigger system over time. The

Level 1 muon trigger now uses tracks found by the CTT to match to scintillator hits,

while the calorimeter trigger extends out to an |η| range of 3.2, allowing a greater re-

gion of phase space in which the b-jet cross section can be measured. The Level 2 and

Level 3 triggers are now fully implemented and functional, which results in a better

selection of µ+jet events, at higher rates.

Offline, the reconstruction program has improved significantly. Especially the re-

construction of central tracks has improved such that local muon tracks can be matched

with central tracks to get an enhanced measurement of the kinematic properties of the

muon. Additionally, progress has been made on the understanding of the jet energy

resolution and energy scales, which are the dominant errors in this analysis. This un-

derstanding decreases the errors on the measured data points, and also allows a more

detailed study of the data, and the comparison to the theory. To quantify this, we

can estimate the improvement on each error source listed in section 7.1.1. We can

base this estimation on the Run I values of the errors as they were used for the mea-

surement of the b-jet cross section at the end of the run, when the detector was well

understood [56]. The estimated new errors are summarized in table 7.6. If we assume

the data points to remain at the measured values, we can calculate a new covariance

matrix that can be used to recalculate the χ2 between the measured data points and

the theoretical prediction. This would result in the χ2 values per degree of freedom

as listed in table 7.5. From these values we can conclude that a subsequent measure-

ment of the b-jet cross section could show a significant discrepancy between the data

and the theoretical predictions, which would indicate a need for improved theoretical

calculations or possibly hints of new physics.
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χ2/ndf Confidence level (%) Confidence level

(one side) (%)

Upper prediction 1.97 11.6 6.55

Central prediction 3.87 0.889 0.520

Lower prediction 5.7 7.6· 10−2 4.20· 10−2

Table 7.5: Results of χ2 comparison between the measured data points, with errors

projected to be significantly reduced based on Run I, and the theoretical calculation,

for the b-jet cross section as function of EjetPL
T .

Error source Run I (%) Current analysis (%) Estimated Run II (%)

Statistical error 3–6 2–4 0.5

Luminosity 5 10 5

Triggers 2.25 9 2.25

Reconstruction 3.6 6 3.6

Jet Energy Scale 10 10 – 40 10

Jet energy resolution

and lepton correction 9 11 5

B-content 5–30 15–32 5–30

Total systematic error 16 – 34 32 – 48 14 – 33

Table 7.6: Estimated errors for a subsequent measurement of the b-jet cross section,

using a larger data set and an improved detector, compared to the errors used in this

analysis. The Run I values on which these estimates are based are also shown.
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Appendix A

Error propagation

In the experiment, we measure a distribution U(x), by measuring N points yi at posi-

tions xi, with an error σi. If we have to use the result of this measurement and its error

for another calculation, we usually approximate U(x) by fitting a function F (x, pk) to

the measured data points using K free parameters, where pk are the free parameters

and k is an index running over the free parameters from 0 to K − 1. The fit is often

done by minimizing the χ2, defined as:

χ2 =
N∑

i=1

(yi − F (xi, pk))
2

σ2
i

(A.1)

which results in the optimal values of the parameters pk that minimize the χ2. To

calculate the error δF (xi, pk) on the function F (x, pk) we can use the covariance matrix

calculated in the fit, which is of dimension K and is of the form:

E =




σ2
p0

ρp0p1σp0σp1 ρp0p1σp0σp2 . . .

ρp0p1σp1σp0 σ2
p1

ρp1p2σp1σp2 . . .

ρp0p2σp2σp0 ρp1p2σp2σp1 σ2
p2

. . .
...

...
...

. . .




(A.2)

where σpk
is the error on parameter pk and ρpkpl

is the correlation between pk and pl.

This covariance matrix can be used to propagate the error δF for each point xi on the

function, according to:

(δF (xi, pk))
2 = (

δF (xi, pk)

δp0

,
δF (xi, pk)

δp1

, . . .) E




δF (xi,pk)
δp0

δF (xi,pk)
δp1

...


 (A.3)
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which is equal to:

(δF (xi, pk))
2 =

K−1∑
k=0

(
δF (xi, pk)

δpk

)2

σ2
pk

+

K−1∑
k=0

K−1∑
l �=k

(
δF (xi, pk)

δpk

) (
δF (xi, pl)

δpl

)
ρpkpl

σpk
σpl

(A.4)

which are the errors on the function F (xi, pk) which can then be used in further cal-

culations.

If we want to use these errors to make a χ2 comparison between two distributions,

we need to calculate the covariance matrix V . If we consider a source of uncertainty

d, with error σ, the elements of the correlation matrix V are given by:

Vij =
δF (EjetPL

T )i

δd
σiΛij

δF (EjetPL
T )j

δd
σj (A.5)

= ∆F (EjetPL
T )iΛij∆F (EjetPL

T )j (A.6)

Here,
δF (E

jetPL
T )i

δd
represents the dependance of the function F at point i on the error d,

and (σi) is the error at point i. The factors Λij depend on whether the source of the

uncertainty is fully, partially or not correlated between point i and point j, according

to:

• The completely uncorrelated uncertainties add to Vij with σiδijσj, therefore Λij =

δij;

• The fully correlated uncertainties add to Vij with σiσj and Λij = 1;

• The partially correlated uncertainties add to Vij with σiρ
k
ijσj, where Λij = ρk

ij is

the covariance matrix for each systematic error.

This calculation is straightforward for completely correlated or uncorrelated uncertain-

ties. For partially correlated uncertainties, the derivation of the covariance matrix ρij

can present a problem. One possible derivation of this covariance matrix is discussed

in appendix B.



Appendix B

The correlation matrix for the

b-content fit

For the b-jet content measurement as explained in section 6.4, we fit a function Z(x; a, b)

with two free parameters, a and b to four data points by minimizing the χ2, defined as:

χ2 =
1

N

N∑
i=1

(Z(xi) − Ri)
2

σ2
i

(B.1)

where Ri is the measured b-content in bin i. This fit results in the optimal values of

a and b, called a0 and b0, that minimize the χ2. We can use the covariance matrix

resulting from this fit to calculate the uncertainty on each point i of the function Z, ∆Zi

(see appendix A). However, this procedure does not provide us with the correlations

between the error at point i, ∆Zi, with that at point j, ∆Zj. This can be loosely

described as the correlation of the function Z with itself. The covariance matrix for

point to point correlations in the function Z is defined similar to equation A.5, with

Λij = ρij and (σk)i = ∆Zi:

Eij = ρij∆Zi∆Zj
δZ

δxi

δZ

δxj

(B.2)

where ρij is the correlation matrix between the points i and j, which is symmetrical

and unity for i = j. We now describe how we can numerically construct this covariance

matrix E. The parameters a0 and b0 provide the best fit and minimize equation B.1

to χ2 = χ2
0. We can now do a large number N of hypothetical experiments, where we

generate the parameters (a, b) around (a0, b0) from a gaussian distribution with width

(σa, σb). Each experiment k results in a new function Z(x; ak, bk) with a corresponding

χ2. We now obtain the covariance matrix E by:

Eij =
1

S

N∑
k=1

(Z(xi; ak, bk) − 〈Ri〉)(Z(xj; ak, bk) − 〈Rj〉)√
∆χ2

(B.3)
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where 〈Ri〉 = Z(xi; a0, b0) and:

S =
N∑

k=1

1√
∆χ2

(B.4)

We weigh each experiment with the inverse square root of the χ2 to normalize each

experiment to the 1σ contour of the gaussian distribution. The parameters xi and xj

are the points on the function Z between which we want to measure the covariance.

The variances (on the diagonal) now give the (squared) errors on Z(xi) and the off-

diagonal elements give the covariances at each point xi with respect to another point

xj.

This algorithm calculates the covariance Eij of the b-content function with itself.

For the final covariance matrix that can be used in a χ2 comparison, we need the

correlation of the measured data points of the b-jet cross section, and not merely that

of the b-content itself. For this, we use this algorithm to calculate the impact of the

errors on a and b on the final b-jet cross section. We again take a large sample N of

(ak, bk) parameters. The reference function R is now the b-jet cross section as shown

in 7.1, while the trial functions are the resulting b-jet cross sections as measured using

the new parameters (ak, bk). Using equation B.3 then results in a covariance matrix E

which can be used in, for example, a χ2 comparison as discussed in section 7.1.1



Appendix C

Glossary

ARVE Atlas Reconstruction and Visualization Environment

FAMUS Forward Angle Muon System, forward muon spectrometer

ARVE Atlas Reconstruction and Visualization Environment

ATLAS A Toroidal LHC ApparatuS

CAL Calorimeter

CC Central Calorimeter

CDF Collider Detector at Fermilab

CFT Central Fiber Tracker, outer part of the inner tracker consisting of

scintillating fibers

CHF Coarse Hadronic Fraction

CJT Level 1 Calorimeter Jet Trigger term

CPS Central Preshower

CTT Central Track Trigger

DØVE D0 Event Display, 3-dimensional wire frame event display

DSP Digital Signal Processor

EC Endcap Calorimeter

EMF Electromagnetic Fraction

FAMUS Forward Angle Muon System, forward muon spectrometer

FPD Forward Proton Detector

FPGA Field Programmable Gate Array

FPS Forward Preshower
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ICD Intercryostat Detector

ICR Inter Cryostat Region, the gaps between the central and forward

calorimeters

JES Jet Energy Scale, correction on the energy of jets measured in the

calorimeter

LINAC Linear Accelerator

MDT Mini Drift Tube, used in the forward muon system to measure

passing muon tracks

MNR Mangano, Nason and Ridolfi, authors of the package used to

calculate the theoretical predictions of the b-jet cross section

MTC Muon Trigger Card, used for the Level 1 Muon Trigger

NADA New Anomalous Deposit Algorithm, used to suppress hot cells

in the calorimeter

PDF Parton Distribution Function

PDT Pressurized Drift Tube, used in the central muon system to

measure passing muon tracks

PS Preshower

SC Scintillating Counters of the muon system

SMT Silicon Microstrip Tracker, innermost tracking detector consisting

of silicon strips

STT Silicon Track Trigger

VME Versa Module Europa, bus system allowing communication between

readout and trigger devices.

WAMUS Wide Area Muon System, central muon spectrometer



Summary

This thesis describes the measurement of the differential b-jet production cross section

using a muon tag, at a center of mass energy of 1.96 TeV. This cross section has been

previously measured at 1.8 TeV using the DØ detector in Run I, and shown to be

around a factor two higher than theoretical predictions. This analysis confirms that

result.

The current state of the theoretical calculation includes a next to leading order

calculation of the b-jet cross section. Using b-jets instead of b-quarks has the benefit

that fragmentation effects are included in the jet algorithm. The dominant error on the

theoretical cross section is coming from the renormalization and factorization scales,

and to a lesser extent from the uncertainty on the mass of the b-quark.

Measuring the b-jet cross section in p̄p collisions requires an intricate system of

accelerators and detectors. The Tevatron at Fermilab accelerates protons and anti-

protons to an energy of 980 GeV, resulting in a center of mass energy of 1.96 TeV

available for the collisions. The DØ detector uses a multitude of components to detect

these collisions, of which especially the muon system and the calorimeter system are

the most important for this analysis.

Due to the high rate of the collisions at the center of the detector, a complex trigger

system is used to filter out the interesting events. Three levels of triggers are designed,

but only the first level trigger, one that requires the presence of a muon and a jet, is

used for this analysis.

Each recorded event needs to be reconstructed to get the real physics objects as

they were produced in the collision, such as muons and jets. The jets are reconstructed

with a 100% efficiency above 20 GeV, but with an energy resolution that is not well de-

scribed by the Monte Carlo simulation. The muons are reconstructed using the central

muon system only, without using the central tracker. Even though the reconstruction

efficiency of the muons is comparable to that predicted by the Monte Carlo simulation,

the simulation does not describe the data well in terms of the direction and momentum

resolution of the muon. This deficiency of the Monte Carlo is addressed in the analysis

by adding additional smearing at the appropriate places.

To measure the b-jet cross section in the data, a data sample is used that is taken

with the DØ detector in the period February 28th until May 10th, 2002. It corresponds
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to a total integrated luminosity of 3.4 pb−1 and contains 361,037 events. From this

data sample, the differential µ+jet cross section as a function of the jet ET is extracted

first. Then, the relative momentum of the muon with respect to the combined µ+jet

axis, a variable called P Rel
T , is used to determine the relative amount of b-jets that are

present in the sample. Folding the µ+jet differential cross section with the relative

b-jet content results in the b-jet cross section, measured as a function of jet transverse

energy as it is measured in the calorimeter.

To be able to compare this cross section to the theoretical predictions, it needs to

undergo a number of corrections. The major corrections are for the resolution of the

calorimeter and the energy carried away by the muon and neutrino in the b → µ + ν

decay. Taking these corrections into account results in the b-jet cross section measured

as a function of the true b-jet ET , which is a quantity which can be compared directly

to the theory.

The measured data points are a factor 1.7 to 2.2 higher than the central prediction

of the calculation. A χ2 comparison with the theory results in a χ2 value, per degree

of freedom, of 1.31 for the central prediction, corresponding to a probability of 15.0%.

The data points are more compatible with the upper band of the prediction, resulting

in a χ2 per degree of freedom of 0.61, corresponding to a probability of 33.5%.



Samenvatting

Dit proefschrift beschrijft de meting van de differentiële b-jet productie werkzame

doorsnede, gebruikmakend van een muon tag, bij een botsingsenergie van 1.96 TeV.

Deze werkzame doorsnede is eerder gemeten bij een energie van 1.8 TeV door de DØ de-

tector gedurende Run I, en bleek ongeveer een factor twee hoger te zijn dan de theo-

retische voorspellingen. Deze analyse bevestigt dat resultaat.

De huidige staat van de theoretische berekening verschaft een hogere orde bereken-

ing van de b-jet werkzame doorsnede. Het gebruik van b-jets in plaats van b-quarks

heeft het voordeel dat fragmentatie effecten zijn meegenomen in het jet reconstructie al-

goritme. De dominante fout op de theoretische berekening van de werkzame doorsnede

vloeit voort uit de keuze van de renomalisatie en factorisatie schalen, en tot op mindere

hoogte van de fout op de massa van het b-quark.

De meting van de b-jet werkzame doorsnede in p̄p botsingen vereist een complex

systeem van versnellers en detectoren. De Tevatron versneller op Fermilab versnelt

protonen en anti-protonen tot een energie van 980 GeV, wat resulteert in een botsings

energie van 1.96 TeV, welke voor de botsingen gebruikt kan worden. De DØ detec-

tor gebruikt een veelvoud van componenten om deze bosingen te detecteren, waarvan

vooral het muon systeem en de calorimeter het meest van belang zijn voor deze analyse.

De hoge frequentie van botsingen in het centrum van de detector vereist een complex

systeem van triggers welke de interessantste events selecteren. Er zijn drie niveaus van

deze triggers ontworpen, maar slechts het eerste niveau trigger, welke een muon en een

jet vereist in het event, is gebruikt voor deze analyse.

Elk geselecteerd event moet worden gereconstrueerd om de werkelijke fysica ob-

jecten die in de botsingen worden geproduceerd, zoals muonen en jets, te verkrijgen. De

jets worden gereconstrueerd met 100% efficientie boven een energie van 20 GeV, maar

de energie resolutie waarmee ze worden gereconstrueerd wordt niet goed beschreven

door de Monte Carlo simulatie. De muonen worden gereconstrueerd door alleen ge-

bruik te maken van het lokale muon systeem, zonder de centrale tracker te gebruiken.

Hoewel de reconstructie efficientie van de muonen vergelijkbaar is met wat door de

Monte Carlo simulatie wordt voorspeld, beschrijft deze simulatie de data niet goed in

termen van de richting en energie resolutie.

Om de b-jet werkzame doorsnede te meten in de data, gebruiken we een data set
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welke genomen is met de DØ detector in de periode 28 februari tot 10 mei 2002. Deze

collectie komt overeen met een totale gëıntegreerde luminositeit van 3.4 pb−1 en bevat

361,037 botsingen.

Uit deze collectie wordt eerst de differenẗıele µ+jet werkzame doorsnede berekend,

als functie van de jet ET . Vervolgens wordt de relatieve impuls van het muon met

betrekking tot de gecombineerde µ+jet, een variabele welke P Rel
T genoemd wordt, ge-

bruikt om de relatieve hoeveelheid b-jets in de data te bepalen. Door deze hoeveelheid

te vouwen met de gemeten µ+jet differenẗıele werkzame doorsnede berekenen we de

b-jet werkzame doorsnede, gemeten als functie van de transversale jet energie in de

calorimeter.

Om deze werkzame doorsnede te kunnen vergelijken met de theoretische voorspellin-

gen moeten er een aantal correcties op worden toegepast. De belangrijkste correcties

zijn voor de resolutie van de calorimeter en de energie welke wordt weggedragen door

het muon en het neutrino komend van het b → µ+ν verval. Als deze correcties worden

meegenomen kunnen we de b-jet werkzame doorsnede als functie van de werkelijke b-jet

ET berekenen, welke direct met de theorie vergeleken kan worden.

De gemeten data punten liggen een factor 1.7 tot 2.2 hoger dan de centrale voor-

spelling van de theorie. Een χ2 vergelijking met de theorie resulteert in een χ2 per

vrijheidsgraad van 1.31 voor de centrale voorspelling, wat correspondeert met een

waarschijnlijkheid van 15.0%. De gemeten data punten komen beter overeen met de

bovenste band van de theorie, welke namelijk resulteert in een χ2 per vrijheidsgraad

van 0.61, wat correspondeert met een waarschijnlijkheid van 33.5%.
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